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FOREWORD BY ANDREAS OSIANDER

To the Reader
Concerming the Hypotheses of this Work

There have already been widespread reports about the novel hypotheses of this work,
which declares that the earth moves whereas the sun is at rest in the center of the universe.
Hence certain scholars, I have no doubt, are deeply offended and believe that the liberal arts,
which were established long ago on a sound basis, should not be thrown into confusion. But
if these men are willing to examine the matter closely, they will find that the author of this
work has done nothing blameworthy. For it is the duty of an astronomer to compose the history
of the celestial motions through careful and expert study. Then he must conceive and devise
the causes of these motions or hypotheses about them. Since he cannot in any way attain
to the true causes, he will adopt whatever suppositions enable the motions to be computed
correctly from the principles of geometry for the future as well as for the past. The present
author has performed both these duties excellently. For these hypotheses need not be true
nor even probable. On the contrary, if they provide a calculus consistent with the observa-
tions, that alone is enough. Perhaps there is someone who is so ignorant of geometry and optics
that he regards the epicycle of Venus as probable, or thinks that it is the reason why Venus
sometimes precedes and sometimes follows the sun by forty degrees and even more. Is there
anyone who is not aware that from this assumpsion it necessarily follows that the diameter
of the planet at perigee should appear more than four times, and the body of the planet more
than sixteen times, as great as at apogee? Yet this variation is refuted by the experience of
every age. In this science there are some other no less important absurdisies, which need not
be set forth at the moment. For this art, it is quite clear, is completely and absolutely ignorant
of the causes of the apparent nonuniform motions. And if any causes are devised by the
imagination, as indeed very many are, they are not put forward to convince anyone that
they are true, but merely to provide a reliable basis for computation. However, since different
hypotheses are sometimes offered for one and the same motion (for example, eccentricity and
an epicycle for the sun’s mosion), the astronomer will take as his first choice that hypothesis
which is the easiest to grasp. The philosopher will perhaps rather seek the semblance of the
truth. But neither of them will understand or state anything certain, unless it has been di-
vinely revealed to him.

Therefore alongside the ancient hypotheses, which are no more probable, let us permit
these new hypotheses also to become known, especially since they are admirable as well as
simple and bring with them a huge treasure of very skillful observations. So far as hypotheses
are concerned, let no one expect anything certain from astronomy, which cannot furnish
it, lest he accept as the truth ideas conceived for another purpose, and depart from this study
a greater fool than when he entered it. Farewell,

XVI



LETTER OF NICHOLAS SCHONBERG

Nicholas Schonberg, Cardinal of Capua,
to Nicholas Copernicus, Greetings.

Some years ago word reached me concerning your proficiency, of which everybody con-
stantly spoke. At that time I began to have a very high regard for you, and also to congratulate
our contemporaries among whom you enjoyed such great prestige. For I had learned that you
had not merely mastered the discoveries of the ancient astronomers uncommonly well but
had also formulated a new cosmology. In it you maintain that the earth moves; that the sun
occupies the lowest, and thus the central, place in the universe; that the eighth heaven re-
mains perpetually motionless and fixed ; and that, together with the elements included in its
sphere, the moon, situated between the heavens of Mars and Venus, revolves around the sun
in the period of a year. I have also learned that you have written an exposition of this whole
system of astronomy, and have computed the planetary motions and set them down in tables,
to the greatest admiration of all. Therefore with the utmost earnestness I entreat you, most
learned sir, unless I inconvenience you, to communicate this discovery of yours to scholars,
and at the earliest possible moment to send me your writings on the sphere of the universe
together with the tables and whatever else you have that is relevant to this subject. Moreover,
I have instructed Theodoric of Reden to have everything copied in your quarters at my ex-
pense and dispatched to me. If you gratify my desire in this matter, you will see that you
are dealing with a man who is zealous for your reputation and eager to do justice to so fine
a talent. Farewell.

Rome, 1 November 1536

XVII
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DEDICATION
TO HIS HOLINESS, POPE PAUL III

PREFACE

I can readily imagine, Holy Father, that as soon as some people hear that in
this volume, which I have written about the revolutions of the spheres of the uni-
verse, I ascribe certain motions to the terrestrial globe, they will shout that I must
be immediately repudiated together with this belief. For I am not so enamored
of my own opinions that I disregard what others may think of them. I am aware
that a philosopher’s ideas are not subject to the judgement of ordinary persons,
because it is his endeavor to seek the truth in all things, to the extent permitted
to human reason by God. Yet I hold that completely erroneous views should
be shunned. Those who know that the consensus of many centuries has sanctioned
the conception that the earth remains at rest in the middle of the heaven as its
center would, I reflected, regard it as an insane pronouncement if I made the
opposite assertion that the earth moves. Therefore I debated with myself for
a long time whether to publish the volume which I wrote to prove the earth’s
motion or rather to follow the example of the Pythagoreans and certain others,
who used to transmit philosophy’s secrets only to kinsmen and friends, not
in writing but by word of mouth, as is shown by Lysis’ letter to Hipparchus. And
they did so, it seems to me, not, as some suppose, because they were in some
way jealous about their teachings, which would be spread around ; on the contrary,
they wanted the very beautiful thoughts attained by great men of deep devotion
not to be ridiculed by those who are reluctant to exert themselves vigorously
in any literary pursuit unless it is lucrative; or if they are stimulated to the non-
acquisitive study of philosophy by the exhortation and example of others, yet
because of their dullness of mind they play the same part among philosophers
as drones among bees. When I weighed these considerations, the scorn which I had
reason to fear on account of the novelty and unconventionality of my opinion
almost induced me to abandon completely the work which I had undertaken.

But while I hesitated for a long time and even resisted, my friends drew me
back. Foremost among them was the cardinal of Capua, Nicholas Schénberg,
renowned in every field of learning. Next to him was a man who loves me dearly,
Tiedemann Giese, bishop of Chelmno, a close student of sacred letters as well
as of all good literature. For he repeatedly encouraged me and, sometimes
adding reproaches, urgently requested me to publish this volume and finally
permit it to appear after being buried among my papers and lying concealed not
merely until the ninth year but by now the fourth period of nine years. The
same conduct was recommended to me by not a few other very eminent scholars.
They exhorted me no longer to refuse, on account of the fear which I felt, to make
my work available for the general use of students of astronomy. The crazier my
doctrine of the earth’s motion now appeared to most people, the argument ran,
so much the more admiration and thanks would it gain after they saw the
publication of my writings dispel the fog of absurdity by most luminous proofs.
Influenced therefore by these persuasive men and by this hope, in the end I
allowed my friends to bring out an edition of the volume, as they had long be-
sought me to do.



REVOLUTIONS

However, Your Holiness will perhaps not be greatly surprised that I have dared
to publish my studies after devoting so much effort to working them out that I did
not hesitate to put down my thoughts about the earth’s motion in written form
too. But you are rather waiting to hear from me how it occurred to me to venture
to conceive any motion of the earth, against the traditional opinion of astronomers
and almost against common sense. I have accordingly no desire to conceal
from Your Holiness that I was impelled to consider a different system of deducing
the motions of the universe’s spheres for no other reason than the realization
that astronomers do not agree among themselves in their investigations
of this subject. For, in the first place, they are so uncertain about the motion of
the sun and moon that they cannot establish and observe a constant length even
for the tropical year. Secondly, in determining the motions not only of these
bodies but also of the other five planets, they do not use the same principles,
assumptions, and explanations of the apparent revolutions and motions. For while
some employ only homocentrics, others utilize eccentrics and epicycles, and yet
they do not quite reach their goal. For although those who put their faith in homo-
centrics showed that some nonuniform motions could be compounded in this
way, nevertheless by this means they were unable to obtain any incontrovertible
result in absolute agreement with the phenomena. On the other hand, those who
devised the ecceatrics seem thereby in large measure to have solved the problem
of the apparent motions with appropriate calculations. But meanwhile they intro-
duced a good many ideas which apparently contradict the first principles of uniform
motion. Nor could they elicit or deduce from the eccentrics the principal considera-
tion, that is, the structure of the universe and the true symmetry of its parts.
On the contrary, their experience was just like some one taking from various
places hands, feet, a head, and other pieces, very well depicted, it may be, but
not for the representation of a single person; since these fragments would not
belong to one another at all, a monster rather than a man would be put together
from them. Hence in the process of demonstration or “method”, as it is called,
those who employed eccentrics are found either to have omitted something essen-
tial or to have admitted something extraneous and wholly irrelevant. This would
not have happened to them, had they followed sound principles. For if the hy-
potheses assumed by them were not false, everything which follows from their
hypotheses would be confirmed beyond any doubt. Even though what I am
now saying may be obscure, it will nevertheless become clearer in the proper
place.

For a long time, then, I reflected on this confusion in the astronomical tradi-
tions concerning the derivation of the motions of the universe’s spheres. I began
to be annoyed that the movements of the world machine, created for our sake
by the best and most systematic Artisan of all, were not understood with greater
certainty by the philosophers, who otherwise examined so precisely the most
insignificant trifles of this world. For this reason I undertook the task of rereading
the works of all the philosophers which I could obtain to learn whether anyone
had ever proposed other motions of the universe’s spheres than those expounded
by the teachers of astronomy in the schools. And in fact first I found in Cicero that
Hicetas supposed the earth to move. Later I also discovered in Plutarch that
certain others were of this opinion. I have decided to set his words down here,
so that they may be available to everybody:
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PREFACE

Some think that the earth remains at rest. But Philolaus the Pythagorean
believes that, like the sun and moon, it revolves around the fire in an
oblique circle. Heraclides of Pontus and Ecphantus the Pythagorean make
the earth move, not in a progressive motion, but like a wheel in a rotation
from west to east about its own center.

Therefore, having obtained the opportunity from these sources, I too began
to consider the mobility of the earth. And even though the idea seemed absurd,
nevertheless I knew that others before me had been granted the freedom to imagine
any circles whatever for the purpose of explaining the heavenly phenomena.
Hence I thought that I too would be readily permitted to ascertain whether
explanations sounder than those of my predecessors could be found for the revolu-
tion of the celestial spheres on the assumption of some motion of the earth.

Having thus assumed the motions which I ascribe to the earth later on in
the volume, by long and intense study I finally found that if the motions of the
other planets are correlated with the orbiting of the earth, and are computed for
the revolution of each planet, not only do their phenomena follow therefrom but
also the order and size of all the planets and spheres, and heaven itself is so linked
together that in no portion of it can anything be shifted without disrupting the
remaining parts and the universe as a whole. Accordingly in the arrangement of
the volume too I have adopted the following order. In the first book I set forth
the entire distribution of the spheres together with the motions which I attribute
to the earth, so that this book contains, as it were, the general structure of the
universe. Then in the remaining books I correlate the motions of the other planets
and of all the spheres with the movement of the earth so that I may thereby
determine to what extent the motions and appearances of the other planets and
spheres can be saved if they are correlated with the earth’s motions. I have no
doubt that acute and learned astronomers will agree with me if, as this discipline
especially requires, they are willing to examine and consider, not superficially
but thoroughly, what I adduce in this volume in proof of these matters. However,
in order that the educated and uneducated alike may see that I do not run away
from the judgement of anybody at all, I have preferred dedicating my studies to
Your Holiness rather than to anyone else. For even in this very remote corner of
the earth where I live you are considered the highest authority by virtue of the
loftiness of your office and your love for all literature and astronomy too. Hence
by your prestige and judgement you can easily suppress calumnious attacks
although, as the proverb has it, there is no remedy for a backbite.

Perhaps there will be babblers who claim to be judges of astronomy although
completely ignorant of the subject and, badly distorting some passage of Scripture
to their purpose, will dare to find fault with my undertaking and censure it.
I disregard them even to the extent of despising their criticism as unfounded.
For it is not unknown that Lactantius, otherwise an illustrious writer but hardly
an astronomer, speaks quite childishly about the earth’s shape, when he mocks
those who declared that the earth has the form of a globe. Hence scholars need
not be surprised if any such persons will likewise ridicule me. Astronomy is
written for astronomers. To them my work too will seem, unless I am mistaken,
to make some contribution also to the Church, at the head of which Your Holiness
now stands. For not so long ago under Leo X the Lateran Council considered
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the problem of reforming the ecclesiastical calendar. The issue remained undecided
then only because the lengths of the year and month and the motions of the sun
and moon were regarded as not yet adequately measured. From that time on, at
the suggestion of that most distinguished man, Paul, bishop of Fossombrone,
who was then in charge of this matter, I have directed my attention to a more
precise study of these topics. But what I have accomplished in this regard, I leave
to the judgement of Your Holiness in particular and of all other learned astrono-
mers. And lest I appear to Your Holiness to promise more about the usefulness
of this volume than I can fulfill, I now turn to the work itself.



GEORG JOACHIM DE PORRIS RHETICUS

INTRODUCTION
"Free in mind must be he who desires to have understanding.

Alcinous

O THE ILLUSTRIOUS JOHN SCHONER, as to
his own revered father, G. Joachim Rheticus sends his

greetings.

On May 14th 1 wrote you a letter from Posen in which I
informed you that I had undertaken a journey to Prussia,' and
I promised to declare, as soon as 1 could, whether the actuality
answered to report and to my own expectation. However, 1
have been able to devote scarcely® ten weeks to mastering the
astronomical work of the learned man to whom I have re-
paired; for I had a slight illness and, on the honorable invita-
tion of the Most Reverend Tiedemann Giese, bishop of Kulm,
I went with my teacher to L&bau and there rested from my
studies for several weeks.” Nevertheless, to fulfill my promises
at last and gratify your desires, I shall set forth, as briefly and
clearly as I can, the opinions of my teacher on the topics which
I have studied.

First of all I wish you to be convinced, most learned Schéner,
that this man whose work I am now treating is in every field
of knowledge and in mastery of astronomy not inferior to
Regiomontanus. I rather compare him with Ptolemy, not be-
cause I consider Regiomontanus inferior to Ptolemy, but because
my teacher shares with Ptolemy the good fortune of complet-
ing, with the aid of divine kindness, the reconstruction of
astronomy which he began, while Regiomontanus—alas, cruel
fate—departed this life before he had time to erect his columns,

My teacher has written a work of six books in which, in
imitation of Ptolemy, he has embraced the whole of astronomy,

" The basic study for the biography of Rheticus will be found in Vierteljahrs-
schrift fiir Geschichte und Landeskunde Vorarlbergs, neue Folge, 11{1918), 5-46.
For subsequent work consult Forschungen zur Geschichte Vorarlbergs und Liech-
tensteins, 1(1920), 128-30; Schriften des Vereines fir Geschichte des Bodensees,
LV(1927), 122-37; and Martin Bilgeri, Das Vorarlberger Schrifttum (Vienna,
1936), pp. 64-70.

* Reading oixr (Th 447.8) instead of viri (PII, 295.7).

*In the light of this remark, we must regard as incorrect Prowe’s statement
(PT, 395) that the Narratio prima was written at Lobau, Prowe himself declares
that Rheticus’s trip to Labau kept him from his studies (PI°, 428).



stating and proving individual propositions mathematically
and by the geometrical method.

The first book contains the general description of the uni-
verse and the foundations by which he undertakes to save the
appearances and the observations of all ages. He adds as much
of the doctrine of sines and plane and spherical triangles as
he deemed necessary to the work.

The second book contains the doctrine of the first motion*
and the statements about the fixed stars which he thought he
should make in that place.

The third book treats of the motion of the sun. And because
experience has taught him that the length of the year meas-
ured by the equinoxes depends, in part, on the motion of the
fixed stars, he undertakes in the first portion of this book to
examine by right reason and with truly divine ingenuity the
motions of the fixed stars and the mutations of the solstitial
and equinoctial points.

The fourth book treats of the motion of the moon and
eclipses; the fifth, the motions of the remaining planets; the
sixth, latitudes.

I have mastered the first three books, grasped the general
idea of the fourth, and begun to conceive the hypotheses of
the rest. So far as the first two books are concerned, I have
thought 1t unnecessary to write anything to you, partly because
I have a special plan,® partly because my teacher’s doctrine of
the first motion does not differ from the common and received
opinion,® save that he has so constructed anew the tables of
declinations, right ascensions, ascensional differences, and the
other tables belonging to this branch of the science that they
can be brought by the method of proportional parts into agree-

¢ The apparent daily rotation of the heavens; see p. 41, above.

® Rheticus doubtless refers to his plan for writing a “Second Account.” For
an explanation why this “Second Account” was never written see p. 10, above,

®But in the common and received opinion the first motion was real; in Coper-
nicus’s system, apparent. Rheticus ignores the distinction, for it involves the
motion of the earth. Throughout the first third of this #ccount he withholds all
reference to Copernicus’s principal alteration of astronomical theory, the shift
from a stationary to a moving earth, and from geocentrism to heliocentrism

(cf. below, Pp- 335-36> n. 11§).



ment with the observations of all ages. Therefore I shall set
forth clearly to you, God willing, the subjects treated in the
third book together with the hypotheses of all the remaining
motions, so far as at present with my meager mental attain-
ments I have been able to understand them.

T he Motions of the Fixed Stars

My teacher made observations with the utmost care at
Bologna, where he was not so much the pupil as the assistant
and witness of observations of the learned Dominicus Maria;*
at Rome, where, about the year 1500, being twenty-seven
years of age more or less, he lectured on mathematics before a
large audience of students and a throng of great men and
experts in this branch of knowledge; then here in Frauenburg,®
when he had leisure for his studies. From his observations of
the fixed stars he selected the one which he made of Spica
Virginis in 1§25. He determined its distance from the autum-
nal point® as about 17°21’, and its declination as not less than
8°40" south of the equator. Then comparing all the observa-
tions of previous writers with his own, he found that a revolu-
tion of the anomaly or of the circle of inequality had been
completed and that the second revolution extends from Tim-
ocharis to our own time. Thereby he geometrically determined
the mean motion of the fixed stars and the equations of their
unequal motion.

Timocharis’s observation of Spica in the 36th year' of the
first Callippic cycle, when compared with his observation in
the 48th year of the same cycle, shows us that the stars
moved I1° in %2 years in that era.” From Hipparchus to

” Concerning whom Lino Sighinolfi has assembled some material, chiefly bio-
graphical, in his article “Domenico Maria Novara e Nicolé Copernico®” (Studs
e memoris per la storia dell universits di Bologna, V [1920], 211-35).

¥Ct. Th 193, note to line 9.

® The first point of Libra (cf. Th 161.24-25).

1° 295/4 B. c. A Callippic cycle conwined 76 years {HIT, 25.16-17; Th159.11).
See ¥. K. Ginzel, Handbuch der mathematischen und technischen Chronologie
(Leipzig, 1906-14), I1, 409-15; and J. K. Fotheringham in Monthly Notices
of the Royal Astronomical Society, LXXXIV(1924), 387-92.

" HII, 28.11-30.17.



Menelaus they regularly completed 1° in 100 years.!? My
teacher therefore concluded that Timocharis’s observations fell
in the last quadrant of the circle of inequality,’® in which the
motion appears mean-diminishing, and that between Hip-
parchus and Menelaus the motion of inequality was slowest.
A comparison of Menelaus’s observations with Ptolemy’s shows
that the stars then moved 1° in 86'* years. Therefore Ptolemy’s

* Ptolemy accepts this estimate as the approximate value for the entire period
from Hipparchus to himself (HII, 23.11-16); and he regards the rate of pre-
cession as constant (HII, 34.11-17).

™ Copernicus held that the rate of precession varied. To represent the variation
he constructs a *circle of inequality,” (Fig. 26) in which a is the point of slowest

b (mean)
I1
Slow- Meatk
increasing {ncreasing
(slowest)ad = ¢ (8w ftest)
8's I1L
Mean- Swift
dimliniabing dlminlsiiing
d (imcan)

FigurE 26

motion } ¢, the point of swiftest motion; & and 4, the poins of mean motion. The
first quadrant ab is the quadrant of slow-increasing motion; the second quadrant
b¢, of mean-increasing motion; the third quadrant ¢d, swift-diminishing; the
fourth quadrant 4z, mean-diminishing. See Th 169.25-170.4, and p. 100, above,

™ This should be 96, as an examination of Menzzer’s chart (p. 21 of his notes)
shows. Menelaus determined the longitudinal distance of Spica from the summer
solstice as 86° 15, and of 8 Scorpii from the autumnal equinox as 35° 5" (HII,
30.18-31.16, 33.3-24; Th 159.24-29). For Ptolemy, 40 years later, the corre-
sponding values were 86° 40" and 36° 20" (HII, 103.16, r09.18; Th 159.29—
160.4; LXXXV! s. in Th 160.1 is wrong, as can be seen in the Lefter agasnst
Werner [cf. p. 104, above] and in the three editions of the Symfaxis available
to Copernicus: 1515, p. 83r; 1528, p. 78r; 1538, p. 187; «f. Th 161.28-31),
For both stars the motion is 25" in 40 years, or 1° in 96 years. It is more likely
that an X has fallen out of LXXXXVI than that Rheticus made an error in his
computations.



observations were made when the motion of anomaly was in
the first quadrant, and the stars then moved with a slow-
increasing'® or -augmenting motion. Further, from Ptolemy to
Albategnius, 66 years correspond to 1*;"° a comparison of our
observations with those of Albategnius shows that the stars
in their unequal motion again completed 1° in 70 years;'* and
a comparison of the observation which I mentioned above with
the others which my teacher made in Italy shows that the
hxed stars in their unequal motion are once more passing
through 1°1n 100 years. Therefore it 1s clearer than sunlight
that between Ptolemy and Albategnius the motion of inequality
passed the first boundary of mean motion and the entire quad-
rant of mean-increasing motion, and about the time of Albateg-
nius was 1n the region of swiftest motion. Between Albategnius
and ourselves the third quadrant of unequal motion was com-
pleted (during this time the stars moved with a swiftdimin-
ishing motion) and the other boundary of mean motion was
passed. In our era the anomaly has again entered the fourth
quadrant of mean-diminishing motion, and hence the unequal
motion 1s once more approaching the point of slowest motion.

To reduce these calculations to a definite system in which
they would agree with all the observations, my teacher com-
puted that the unequal motion is completed in 1,717 Egyptian
years,'® the maximum correction is about 70", the mean motion

* addito (Th 449.3) has dropped out of Prowe’s text (PIL, 298.14).

’* Nallino, 4L-Battani, 1, 124.32-33, 128.2-¢. A translation of Albategnius’s
work into Latin was included in a book printed at Nuremberg in 137 and was
presumably available to Copernicus and Rheticus, as may be inferred from the
latter’s remark about Albategnius on p. 124, below. The volume opened with
a treatise entitled in some copies Rudimenta astronomica Aifragani, and in others,
Brevis ac perutilis compilatio Alfragani. 1 have been unable to consult this trans-
lation, but the relevant passage was excerpted by Menzzer (n. 81). Rheticus
ignores the distinction made by Copernicus (Th 162.7-11) that the rate of pre-
cession was 1° in 66 years from Menelaus to Albategnius, and 1° in 65 years
from Ptolemy to Albategnius. The distinction is based on the observations cited
in Th 159.24—160.10.

™ Copernicus states this rate as 1° in 71 years (Th 162.12-14); calculation
from his data gives the fractional result 1° in 70% years.

® The changing rate of precession requires 717 years to pass through the
four quadrants of the circle of inequality.



of the stars in an Egyptian year is about 50”,"” and the com-
plete revolution of the mean motion will take 25,816 Egyptian

years.”

General Consideration of the Tropical Y ear

Thas theory of the motions of the fixed stars is supported
by the length of the year reckoned from the equinoctial points.
It is quite clear why from Hipparchus® to Ptolemy there was
a deficiency of %o of a day;** from Ptolemy to Albategnius,
of about 7 days;* and from Albategnius to the observations
which my teacher made in 1515, of about § days.* These dis-
crepancies are not at all caused by a defect in the instruments,
as was heretofore believed, but occur according to a definite
and completely self-consistent law. Hence equality of motion
must be measured, not by the equinoxes, but by the fixed stars,
as observations of the motions not merely of the sun and
moon but of the other planets as well testify with a remarkable

unanimity of all ages.

* 'The mean rate of precession is about 50" a year, or ° in about 7z years;
and the greatest difference between the mean equinox and the true equinox is
about 70* (Th 179.4+7).

(a) The slowest rate of precession is 1° in xoo years, or 36" a year. The
difference between the slowest rate and the mean rate is 14" a year, and in 300
years (the three centuries before Menelaus) the maximum difference of 70’
between mean and true equinox is atssined.

(8) The swiftest rate is 1° in 66 years, or slightly more than 54%” a year.
The difference between the swiftest rate and the mean rate is about 412" a year,
and in 743 years (between Ptolemy and Albategnius) about % of the maximum
difference of 70’ is attained; the remaining ¥ accumulates because the rate of
precession during the 620 years between Albategnius and Copernicus’s observations
in Italy is slightly more rapid than the mean rate,

Copernicus’s estimate of the mean precession, about 50” a year, agrees quite
closely with the determination accepted at present. His belief in the cyclic varia-
tion of the rate of precession is of course erroneous.

* The complete passage of the stars around the celestial sphere requires 25,816
years.

" Michael Mistlip, editor of the fourth (1596) and fAfth (1621) editions
of the Narratio prima, correctly substituted “Hipparchus” for the older reading
“Titnocharis.” Unfortunately the incorrect reading was revived in Th 449.24-25.
®HI, 203.22—204.18, The tropical year (t) i less than 365% days; the
“deficiency” from year x to year y is (y — x) (365% days — t),
® Nallino, #LBattini, I, 42.10-14. *FTh 193.20-21.



It is the accepted opinion that because from Timocharis to
Ptolemy the stars moved very slowly the year was less than
365% days by only Y8oe of a day;** and from Ptolemy to Alba-
tegnius, because the stars moved rapidly, by %oe of a day.”
If the observations of our age are compared with those of
Albategnius, it is clear that the difference is %28 of a day.”
Therefore a greater length of the tropical year apparently
corresponds to a slow motion of the stars, a lesser length to a
swift motion, and the lengthening of the year to a diminishing
velocity; so that if the length of the tropical year in our era
is accurately determined, it will again be almost the same as
Ptolemy’s value. Hence we must say that the equinoctial points,
like the nodes of the moon,”® move in precedence, and not that
the stars move in consequence.*

We must accordingly imagine a mean equinox moving 1n
precedence from the first star of Aries in the sphere of the
fixed stars, and displacing them by its uniform motion. The
true equinox deviates to either side of this mean equinox in an
unequal and regular motion; but the radius of the distance
between the true equinox and the mean equinox does not much
exceed 70’. Thus a definite law governing the length of the
tropical year has existed in all ages, and 1t can be ascertained
today. It agrees very closely, moreover, and almost to the
minute with the observations which all scholars have made of
the fixed stars. |

To ofter you some taste of this matter, most learned Schéner,
I have computed for you the true precession of the equinoxes at
certain times of observation.,

®HI, 205.9-14, 207.24—208.1.

* Albategnius’s estimate of the length of the tropical year was 365%14™26*

(Nallino, op. cit., 1, 42.17). The difference between this value and 365% days
(= 365%55™) is 34" or 3%3800 of a day. Albategnius expresses this difference as

2?%(0?. cit., I, 127.19-20). It is much closer to ¥106 than to ¥os of a day, and
Copernicus writes the more accurate fraction (Th 193.2-3). Hence I have fol-
lowed Mistlin in changing our text from %oz to ¥00.

*Th 193.20-21, 194.4-5.

» See p. 73, above.

® Copernicus interpress precession as a motion of the equator.



Egyptian Year T'rue Precession Period

0 ’
nC. 293 2 24 Timocharis
x27 4 3 Hipparchus
C.E. 138 6 40 Ptolemy
880 18 10 Albategnius
1076 19 379 Arzachel
1525 27 21 present

Ptolemy’s precession subtracted from the positions of the
stars as gtven by Ptolemy leaves a remainder equal to the dis-
tance of the stars from the first star of Aries; then the addition of
Albategnius’s precession gives the true position of the observed
star. A similar procedure is followed in all the other cases. The
results thus obtained coincide to the utmost degree of exactness
with the observations of all scholars, even where the minutes
are noted, or are derived from recorded declinations or from
the motion of the moon reduced to greater precision, as a com-
parison of our observations with those of the ancients shows us.
For when the minutes are neglected, as you see, at least a part
of a degree is cut off,” %£° or %° or %°, etc. However, these
resuits do not agree with the motions of the planetary apsides,
and therefore an independent motion had to be assigned to
them, as will be clear from solar theory.*

Realizing that equality of motion must be measured by the
fixed stars, my teacher carefully investigated the sidereal year.

y MYy y g y

He finds that it is 36§ days, 1§ minutes, and about 24 seconds®
and that it has always been of this length from the time of

®Prowe states (PII, joon) that the first edition read incorrectly 12° 37°,
and that the change to 19° 37° was made by Mistlin. But the Basel edition of
1566 gave 19° 37° (p. 198r); and that number is suspect, for it would make the
rate of precession () between Albategnius and Arzachel too slow (i° 29" in
196 vears, or 1° in 135 years); and (») between Arzachel and Copernicus too
fast (7° 44° in 449 years, or 1° in §8 years}. To be consistent with the theory
and the rest of the table, the true precession for Arzachel must be about 20° §7’.

¥ Reading recidant (Th 450.28) instead of recitant (PII, 301.9).

¥ See pp. 119-21, below.

*™ The minute of the text is a minutum diei = Y60 of a day = 24™; in like
manner, the second = Yo of a minutum diei = 24% The length of the sidereal
year, then, is given here as about 36536%9™36% In De rev. it is given as
3659629%40%; cf, p. 67, above.



the earliest observations. For the fact that the Babylonians,
according to Albategnius, assign 3 seconds more,* and Thabit
1 second less,*® can be safely ascribed to either the instruments
and observations, which, as you know, cannot have been entirely
accurate, or to the inequality in the motion of the sun, or even
to the circumstance that the ancients, having no sure theory of
eclipses, neglected to take account of the solar parallax in their
observations. In any case, this discrepancy over the entire
period from the Babylonians to ourselves cannot be compared
with the discrepancy of 22 seconds between Ptolemy and Alba-
tegnius.”® That there necessarily was a deficiency of '%ze of a
day from Hipparchus to Ptolemy, and from Ptolemy to Alba-
tegnius of about 7 days, 1 have deduced, not without the
greatest pleasure, most learned Schoner, from the foregoing
theory of the motions of the stars and from my teacher’s

treatment of the motion of the sun, as you will see a little
further on.”’

The Change in the @bliquity of the Ecliptic

My teacher found that the cycle of maximum obliquity
stands 1n the following relation: while the unequal motion of
the fixed stars 1s once completed, half of the change in the
obliquity occurs. He therefore concluded that the entire period
of the change in the obliquity is 3,434 Egyptian years.*

% The Latin translation of Albategnius gave 365%4 4 319 = 36591 5™a29%4°
(see above, p. 67, n. 25). However, the Arabic MS on which Nallino based
his text reads (I, g0.28-29) 365%9 + Yi2e9 = 365%15™30%.

* Rheticus and Copernicus (Th 194.8-12) probably drew this information
about Thibit from the Epitome, Bk. III, Prop. 2 (see above, p. 65, n. 19),
which gave Thabit’s value as 365%64g™12% (= 365%15™@21%). Proof that Rheticus
used the Epitome is afforded by two references to it (p. 124, below) and by a
quotation from it (pp. 133-34, below). For Thabit see George Sarton, Introduc-
tion to the History of Science (Baltimore, 1927~ ), I, 599-600.

* Rheticus is referring to the difference in their determinations of the
length of the tropical year: Ptolemy 365914™48% (HI, 208.11-12)

Albategnius 365914™26% (See above, p. 115, B. 26)

228

* Pages 128-30, below.
It was stated above (p. 113} that the period of the unequal motion of the
fixed stars is 5,717 Egyptian years.



In the time of Timocharis, Aristarchus, and Ptolemy the
change in the obliquity was very slow, so that they believed the
maximum arc of declination to be invariable, always having the
value of 73 of a great arcle.”® After them, Albategnius an-
nounced the obliquity for his own era as about 23°35";%
Arzachel, about 190 years after him, 23°34’; and Prophatius
Judaeus, 230 years later, 23°32’. In our own era it appears
not greater than 23°2872".*" Accordingly it is clear that in the
400 years before Ptolemy the change in the obliquity was very
slow. But from Ptolemy to Albategnius, a period of about 7350
years, the obliquity decreased by 17/, and from Albategnius to
ourselves, a pertod of 650 years, by only 7’. Hence 1t follows
that the variation of the obliquity, like the deviation of the
planets from the ecliptic,* is governed by a motion in libration
or motion along a straight line. It is a property of such motion
that 1n the middle the motion i1s quickest, and slowest at the
ends. Then about the time of Albategnius the pole of the equa-
tor or of the ecliptic was approximately in the middle of this
motion 1n libration, while at present it 1s near the second limit
of slowest motion, where the poles approach each other most
closely. But I stated above® that the motions of the fixed stars
and the variation mn the length of the tropical year are saved
by the motion of the equator. Now the poles of the equator

®3%3 X 360° = 47° 42’ 407, which makes the obliquity z23° sy’ zo” (HI,
68.4-6, 81.50).

“ Nallino, 4.-Battani, 1, 12.20-223 Menzzer, n. 87.

“Th 162.24-25, 171.31-172.4; cf. above, P. 64, n. 15. The foregoing swate-
ment about the history of the determinations of the obliquity is virtually identical
with the scholion in Reinhold’s 1542 edition of Peurbach’s Theorsicae novas
planetarum, fol. e8r-v; cf. Boncompagni, Bulletino di bibliografia e¢ di storia
delle sciense, XX(1887), 594-95. Since the statement in our text is earlier than
Reinhold’s, but Reinhold’s contains additional items, apparently they both drew
from some common source. For Arzachel and Prophatius Judaeus see Sarton,
Introduciion, 1, 758-59; II, 850-53. Copernicus believed that Prophatius obtained
his value of 23° 32° by a direct determination; but it was rather a calculation
from Arzachel’s tables, according to Duhemn (Le Systéme du monde, 1II, 3r1).
J. Millas i Vallicrosa has published Prophatius’s translation of Arzachel’s Sapiea
in Don Profeit Tibbon, Tractat de DPassafea d&’4zarquiel (Barcelona, 1933).

“Cf. pp. 80-81, 84-85, above and pp. 180, 182-85, below.
©See above, p. 115, n. z9.



are the prolongations of the earth’s axis, and it is from them
that the altitude of the pole is measured. Let me in passing
call your attention, most learned Schéner, to the sort of hy-
potheses or theories of motion that the observations require;
but you will hear clearer evidence.

Furthermore, my teacher assumes that the mimimum ob-
liquity will be 23°28”, and the difference between the minimum
and the maximum, 24’. On this basis he geometrically con-
structed a table of* proportional minutes, from which the
maximum obliquity of the ecliptic may be derived for all
ages. Thus the proportional minutes were, in the time of Ptol-
emy 8, Albategnius 18, Arzachel 15, and in our own time 1.*
If, using these figures, we take proportional parts of the 24"
difference between minimum and maximum, we shall have a
sure rule for the change in the obliquity.*

The Eccentricity of the Sun and the Motion of the Solar
Apogee

Since every difficulty in the motion of the sun is connected
with the variable and unstable length of the year, I must first
speak of the change in the apogee and eccentricity, in order
that all the causes of the inequality of the year may be effumer-
ated. However, by the assumption of theories suitable to the
purpose, my teacher shows that these causes are regular and
certain.

When Ptolemy declared that the apogee of the sun was
fixed,*’ he preferred accepting the common opinion to trusting
his own observations, which differed perhaps but little from the
common opinion. But it can be definitely established from

“In his 1621 edition (p, 99), Mistlin inserted “sixty.”

“Thus in the case of Arzachel, %0 X 24’ = 6’ -+ 23° 28" = 23° 34’. For
Albategnius, the editions of our text put the number of proportional minuytes at
243 I have emended this obviously incorrect number to 18.

“ For modern astronomy the change in the obliquity is a progressive diminution.
The evidence available to Copernicus warranted only the same conclusion (Th
76.27-28). But he believed that after the obliquity had detreased to 23° 28’ it

would increaseto 23° §z’, completing a cycle which would then be repeated.
“ HI, 232.18-233.16;5 cf. n. 13, pp. 62-63, above.



his own account that about the time of Hipparchus, that 1s, 200
years before his own time, the eccentricity was 417°° of the
units of which 10,000 constitute the radius of the eccentric,
and in his own time 414.*° In the time of Arzachel (in whom
Regiomontanus had great faith) the eccentricity was about 346,
according to the maximum inequality.”® But in our own time
1t 1s 323, since my teacher states that he finds the maximum
inequality not greater than 1°50%’.*

Furthermore, carefully investigating the motions of the
apsides of the sun and of the other planets, he learned, as you
see from what has been said above,? that the apsides have
independent motions in the sphere of the fixed stars. We are
no more justified in attributing the apparent motions of the
fixed stars and apsides, and the change in the obliquity to a
single motion and a single cause than is one of your experts,
who speak of the motions of the planets as self-moving, in
attempting to produce the motions and appearances of each of
the planets by one and the same device; or than anyone under-
taking to defend the view that the foot, hand, and tongue exer-
cise all their functions by means of the same muscle and by the
same motive force. Therefore my teacher assigned two motions
to the solar apogee, one mean and the other unequal, with
which it moves 1n the eighth sphere. Moreover, since the true
equinox moves with a regular unequal motion in the reverse

® HI, 233.5-8; Hipparchus determined the eccentricity as approximately 44
of the radius of the eccentric: %4 X 10,008 = ¢16%.

HI, 236.x5~18. Ptolemy’s value for the eccentricity is slightly smaller than
Hipparchus’s; but since he believed the eccentricity to be constant (see above, p.
61, n. 9), he ignored the sinall difference between the two values, which he
denotes as approximate (¢yytora) in any case. Copernicus held that the eccen-
tricity varies, and hence utilized the difference. Ptolemy’s value would be more
accurately expressed as 415 than as 414 (Th 209. n. to line 12).

* For the method of computing the eccentricity from the maximum inequality,
see above, p. 61, n. 11. The information that Arzache! had put the maximum
inequality at 1* 59" 10” (cf. Th 212.15-16) was obtained by Copernicus and
Rheticus from the Epitome, Book IFY, Prop. 13. By the Table of Chords (Th
44.18-19), this inequality would correspond te an eccentricity of 346 {cf. Th
210.1~6 ),

®Th 211.16-19; 212.16; 224.8, 37.

® Page 116.



order of the signs, the apogees of the sun and of the other
planets, like the fixed stars,”® are displaced eastward. Conse-
quently, to harmonize the observations of all ages in a con-
ststent law, my teacher was compelled to distinguish these three
motons.

To understand this analysts, assume a maximum eccentricity
of 417 units, and a minimum of 321. Let the difference, 96, be
the diameter of a small circle, on whose circumference the
center of the eccentric moves from east to west. The distance
from the center of the universe, then, to the center of the
small circle will be 369 units. You will recall that 10,000 of
these units constitute the radius of the eccentric. This is the
device which my teacher derived from the three above-men-
tioned eccentricities, in 2 manner closely resembling the surely
divine discovery by which the uniform motions of the moon are
determined from three lunar eclipses.**

My teacher further established that the velocity with which
the center of the eccentric revolves is the same as that with
which each value of the changing obliquity recurs. This dis-
covery is indeed worthy of the highest admiration, since it is
achieved with such great and remarkable agreement.

The eccentricity was greatest about 60 B.c,, when the
declination of the sun was also at its maximum. The eccentricity
has decreased, moreover, in accordance with this single law,
similar to no other. This and other® like sports of nature often
bring me great solace in the fluctuating vicissitudes of my for-
tunes, and gently soothe my troubled mind.

The Kingdoms of the World Change with the Motion of the

Eccentric

I shall add a prediction. We see that all kingdoms have had
their beginnings when the center of the eccentric was at some
special point on the small circle. Thus, when the eccentricity
of the sun was at its maximum, the Roman government be-

™ See p. rrs, above.
“HI1, 265.16-19, 268.3-12; Th 236.15-17, 28-32; 246.3-8,
% Reading ali (Th 453.7) instead of alebs (PII, 304.1).



came a monarchy; as the eccentricity decreased, Rome too de-
clined, as though aging, and then fell. When the eccentricity
reached the boundary and quadrant of mean value, the
Mohammedan faith was established; another great empire
came into being and increased very rapidly, like the change in
‘the eccentricity. A hundred years hence, when the eccentricity
will be at its minimum, this empire too will complete its period.
In our time it is at its pinnacle from which equally swiftly, God
willing, it will fall with a mighty crash. We look forward to
the coming of our Lord Jesus Christ when the center of the
eccentric reaches the other boundary of mean value, for it was
in that position at the creation of the world. This calculation
does not differ much from the saying of Elijah, who prophesied
under divine inspiration that the world would endure only
6,000 years,® during which time nearly two revolutions are
completed. Thus it appears that this small circle 1s in very
truth the Wheel of Fortune, by whose turning the kingdoms
of the world have their beginnings and vicissitudes. For in this
manner are the most significant changes in the entire history of
the world revealed, as though inscribed upon this circle. More-
over, I shall soon, God willing, hear from your own lips how
it may be inferred from important conjunctions and other
learned prognostications, of what nature these empires were
destined to be, whether governed by just or oppressive laws.®

¥ From Rheticus’s language it appears that he attributed the dire prophecy
to the prophet Elijah. But the Old Testament contains no such prediction by
Elijah; however, the late Prof. Ralph Marcus kindly calied my attention to the
following passage in the Babylonian Talmud: “The Tanna debe Eliyyahu teaches:
The world is to exist six thousand years” (Babylonian Talmud, English translation,
ed. Isidore Epstein {London, 1915- ], Sankedrin, Vol. X1 [= Nexzikin, Vol. VI],
p. 657,

' Rheticus again displays his devotion to astrological superstition in the Preface
 to Werner's De #riangulis sphaericis, He there declares: “The changes in empires
depend upon celestial phenomena. Lands formerly distinguished for their culture,
fertile soil, and possessions now lie barren and desolate, inhabited bv barbarians,
oppressed by tyranny . . . The fiercest nations become civilized, unproductive
land is brought under cultivation, from heaven are sent down new forms of earth,
culture, and physical type of man. And we see that at intervals of about three
hundred and fifty years there always occurs some significant change in the sub-



Now while the center of the eccentric descends toward the
center of the universe, the center of the small circle, 1t is clear,
moves in the order of the signs about 2§” each Egyptian year.
And starting from the point of its greatest distance from the
center of the universe, the center of the eccentric moves in
precedence. Hence the inequality arising from the motion of
the anomaly for any specified time is subtracted from the mean
motion, until a semicircle 1s completed; but in the other semi-
circle it is added, in order to obtain the true®® motion of the
apogee. Now the greatest difference between the true and mean
apogee 1s deduced, in the proper geometrical manner, from
the above-mentioned data as 7°24”; the other differences are
determined, in the customary way, from the position of the
center of the eccentric on the small circle. The unequal motion
1s known, since three positions are given. With regard to the
mean motion there is some doubt, since we do not have for
these three positions the true place of the solar apogee on the
ecliptic. The doubt arises from the disagreement between

lunar world, corresponding to some important alteration in the motion of the
sphere of the fixed stars” (4 bk. zur Gesch. d. math. Wiss., XXIV, 1, fol. az2v).
Later in the same Preface he asserts: “As far as the stars are concerned, I have
no doubt that for the Turkish empire there is impending disaster, momentous,
sudden, and unforeseen, since the influence of the fiery Triangle is approaching,
and the strength of the watery Triangle is declining. Moreover, the anomaly
of the sphere of the fixed stars is nearing its third boundary. Whenever it reaches
any such boundary, there always occur the most significant changes in the world
and in the ewpires, as history makes clear” (#64d., fol. asr).

In a letter to Tycho Brahe, Christopher Rothmann censures Rheticus and
asks: “How can the variation in the eccentricity of the sun produce a change
of empires?” {Tychonss Brake opéra omnia, ed. Dreyer, VI, 160.28-29). I know
of no evidence indicating that Copernicus shared the astrological views of Rheti-
cus. Dreyer would perhaps not have advanced this suggestion (Planetary Systems,
p. 333), had he been familiar with the aforementioned Preface by Rheticus.

Schéner’s @pera mathesnatica appeared at Nuremberg in 1551, and again in
1561. The first paper is an introduction to judicial astrology (Isegoge astrologiae
iudiciariae), and the second is a fearfully thorough essay in genethlialogy (Ds#
indiciss nativstatum).,

®Reading verus (Th 453.35) instead of wersus (PII, 306.3).

®In De rev. Copernicus puts the greatest difference at about 7%2° (Th z23.
s-8); while an earlier passage gives 7° 28" (Th 221.3-5), Rheticus has chosen
to follow Copernicus’s tables, which give 7° 24" (Th 224.8-10).



Albategnius and Arzachel, pointed out by Regiomontanus in
the Epitome, Book III, Proposition 13.%*

Albategnius 1s too free in his treatment of the inner secrets
of astronomy, as can be seen in many passages. Did he commit
this fault in his determination of the solar apogee? Let us grant
that he had the correct time of the equinox. Nevertheless, 1t 1s
impossible, as Ptolemy states,”” by means of instruments to
determine with precision the times of the solstices. For a single
minute of declination, which of course easily escapes the eye,
may deceive us in this matter by about 4°, to which four days
correspond. How was Albategnius able to determine the posi-
tion of the solar apogee?! 1f he used the method of intermediate
positions on the ecliptic, explained by Regiomontanus in the
Epitome, Book 111, Proposition 14, he failed to employ a more
trustworthy procedure. He is therefore himself to blame for
going astray, since he selected eclipses occurring not near the
apogee, but near the middle longitudes of the eccentric of the
sun, where the solar apogee, even if mistakenly located 6°
from 1ts true position, could produce no noticeable error in
eclipses.

According to Regiomontanus,® Arzachel boasts that he made
402 observations, and determined from them the position of
the apogee. We grant that by this diligence he found the true
eccentricity. But since it 1s not clear that he took into account
lunar eclipses occurring near the apsides of the sun, 1t is ap-
parent that we must no more accept his*® determination of
the higher apse than that of Albategnius.

® “Albategnius determined the eccentricity as z° 4” 45", and the arc BH as
7° 43" Arzachel, however . . . found the same eccentricity as Albategnius, but
his value for the arc BH was 12° 1c’. This is certainly surprising, since Arzachel
lived after Albategnius’’ The arc BH is the distance from the apogee to the
summer solstice.

“HI, 196.21-197.11,

* Epitome, Book III, Prop. 13: “Arasachel, 193 Yyears after Albategnius, made
402 observations [comsiderationes] of the four points midway between the equi-
noctial and solstitial points;, and found BH to be 12° ro’.” It should be noted,
with reference to the esguivalence of comsideratio and observatio (see above, p.
99, n. 23), that in citing this passage Rheticus altered comsiderationesto obser-
yaliones,

**Reading #; (Th 4$4.20) instead of eés (PII, 306.32).



Now you see what great effort my teacher had to put forth
to determine the mean motion of the apogee. For nearly 40
years in Italy and here in Frauenburg, he observed eclipses
and the motion of the sun. He selected the observation by
which he established that in c.E. 1514 the solar apogee was at
6%° of Cancer.”® Then esmmining all the eclipses in Ptolemy
and comparing them with his own very careful observations, he

concluded that the mean annual® motion of the apogee with

reference to the fixed stars was about 25”,°® and with reference

to the mean equinox about 1°15”.°” Through this result it is
established, by applying the true precession to both the mean
and the unequal motions, that the true® position of the apogee

was in the time of Hipparchus 63° from the true equinox,

Ptolemy 64%°, Albategnius 76%°, and Arzachel 82°, while

in our time all the calculations agree with experience. These
figures are surely more satisfactory than the Alfonsine, which
put the solar apogee at 12° of Gemini in the time of Ptolemy,
and at the beginning of Cancer in our time.*”” We are 2° closer
than the Alfonsine Tables to the estimate of Arzachel.” Alba-
tegnius’s computation of the position of the apogee exceeds the

Alfonsine by 1°, while we, for a good reason, fall short of his

hgure by 6°.” For my teacher cannot depart from Ptolemy
and from his own observations, not only because he made and

*Th 210.10-211.26.

® Reading annuum (Th 454.26) instead of ammaume (PII, 307.8).

*Th 221.32~222.3.

* The mean annual motion of the equinox (mean precession) is about $o0”
(see pp. 113-14, above; c¢f. Th 172.14-17), and it is retrograde {see p. 115,
above). The motion of the apogee is direct (see p. 123, above). Hence, to obtain
the motion of the apogee relative to the equinox, the two mean annual rates must
be added: 2¢” + 50" = 1’ 14”.

® Reading verus (Th 454.29) instead of versus (PII, 307.12).

® That is, at 72° for Ptolemy’s time, and at go° for Copernicus’s time,

" As we saw above (notes 60 and 62 on p. 124), the Epitome stated that
Arzache] found the apogee 12° 10’ from the summer solstice = 7%° 50" from the
equinox; cf. Th 210.5-8.

™ Albategnius located the apogee 7° 43’ from the summer solstice = 82° 1%
from the equinex; cf. above, p. 124, n. 60 and Nallino, 41-Battani, 1, 44.29-33.
The version of the Alfonsine Tables to which Rheticus refers evidently contained
the following values: for Ptolemy’s time, 72°; Albategnius’s, 81°; Araachel’s,
72° {or 84°?); Copernicus’s, go°.



noted his own observations with his own eyes, but also because
he knows that Ptolemy, working with the utmost care and
making use of eclipses, accurately investigated the motions of
the sun and the moon and established them correctly, so far as
he could. We are compelled, nevertheless, to differ from him
by about 1°,"® as the motion of the apogee has made clear to us.
For Ptolemy regarded the apogee as fixed and therefore
showed little care in his treatment of this topic.

You have the opinion of my teacher regarding the motion
of the sun. He has accordingly drawn up tables in which he
collects for any specified time the true position of the solar
apogee, the true eccentricity, the true inequalities, the uniform
motions of the sun with reference to the fixed stars and to the
mean equinoxes, and hence the true position of the sun cor-
responding to the observations of all ages. Clearly the tables
of Hipparchus, Ptolemy, Theon, Albategnius, and Arzachel,
and the Alfonsine Tables, which are to some extent a composite
of the others, are temporary only and can endure at most 200
years, until; that is, the discrepancy in the length of the year,
eccentricity, inequality, etc., becomes evident, a thing which oc-
curs in the motions and appearances of the other planets for a
stmilar definite reason. Not undeservedly, therefore, could the
astronomy of my teacher be called perpetual; as the observa-
tions of all ages testify, and the observations of posterity will
doubtless confirm. But he calculates his motions and the posi-
tions of the apsides from the first star of Aries,™ since equality
of motion is measured by the fixed stars. Then by adding the
true precession, he computes and determines the distance in
each age of the true positions of the planets from the true
equinox.

If such an account of the celestial phenomena had existed a

™ Mipparchus found the apogee 24%%° from the summer solstice (HI, 233.8-10)
:)65%" from the equinox, and Ptolemy accepted his determination (I, 237.6-
11),

Py Arietis (Th 130.6-7), not & Arietis {Th 130.22) as Berry thought
(4 Short History of Astromomy, p. t10 n); cf. above, p. €3, n, 135 Rudolf
Wolf, Geschichte der Astronomie (Munich, 1877), p. 240; Dreyer, Planctary
Systems, p. 3303 Armitage, Copernicus, pp., 105-6.



little before our time, Pico would have had no opportunity, in
his eighth and ninth books," of impugning not merely astrol-
ogy but also astronomy. For we see daily how markedly
common calculation departs from the truth.

Special Consideration of the Length of the Tropical Y car

In improving the calendar most scholars enumerate various
lengths of the year as computed by writers. But they do this
in a confused way and come to no conclusion—surely a re-
markable procedure for such great mathematicians.

From what has been said above, however, most learned
Schéner, you see the four causes of the unequal motion of the
sun as measured by the equinoxes: the inequality of the pre-
cession of the equinoxes, the inequality of the motion of the
sun in the ecliptic, the decrease of the eccentricity, and last,
the motion of the apogee for a twofold reason. By virtue of the
same causes, the tropical year cannot be equal.

We may readily pardon Ptolemy for measuring equality of
motion by the equinoxes,” since he held that the fixed stars
move in consequence, © the position of the apogee is fixed, " and
the eccentricity of the sun does not decrease.” How others
would excuse themselves, I do not know. Let us even grant
them that the stars and the solar apogee have the same motion
in consequence; that therefore time measured by the true
equinox in reality does not change; and that the entire in-
equality (though to assert this in our time would be most
absurd) is caused by the defect in the instruments, since the
motion of the solar apogee produces only a slight change in the
length of the year. Nevertheless, it will not therefore follow
that the sun regularly returns to the true equinox always in
equal times, as we say that the moon regularly increases its
distance from the mean apogee of the epicycle, and returns to
the same position in equal times—a statement quoted by the

™ Pico della Mirandola, Disputationes adwersus assrologos, Books VIII-IX (pp.
457-82 in the Venice, 1498, edition of Pico’s Opera ommia).

™ See above, p. 65, n. 18.

" HI, 193.14-16; cf. above, p. 613, n. 13.

""See p. 114, above. ™ See above, p. 120, n. 49.



learned Marcus Beneventanus™ from the Alfonsine Tables.
For since we surely cannot deny that the eccentricity of the
sun changes, how can they assert that the vanation of the angle
of anomaly from the mean motion does not alter the length of
the tropical year? I heartily congratulate the state and all
scholars, whom the work of my teacher will advantage, that we
have a sure understanding of the inequality of the year.

But that you may the more readily grasp all these ideas,
most learned Schéner, I set them forth numerically before
your eyes, in order that I may at length fulfill the pledge I
made above.*

Let the sun be at the mean vernal equinoctial point, which
was 3°29” west of the first star of Aries at the time of the
observation of the autumnal equinox made by Hipparchus in
147 B.c.>' Let the sun move from this point in the eighth
sphere and return to it in a sidereal year (365 days, 1§ min-
utes, and about 24 seconds).”* However, because the mean
equinox in a sidereal year moves about 50" in the direction
opposite to that of the sun, the result®™ is that the sun reaches
the new position of the mean vernal equinoctial point before it
reaches the starting point, where the sun and the mean equinox
had occupied the same position on the ecliptic. Therefore the
year as measured by the mean equinox is shorter than the
sidereal year,* and is computed to be, on the basis of our hy-
potheses, 365 days, 14 minutes, and about 34 seconds.”® Now if,
for the year measured by the mean equinox, we inquire what
the excess® in days and fractions of days amounted to in the

" For a brief account of the life and work of Marco da Berevento see L. Birk-
epmajer in Bulletin international de Pacadémie des sciences de Cracovie, classe des
sciences wmath. et naturelles (19ox), pp. 63-715 and A, Birkenmajer in Phslosoph-
ssches Jakrbuch, XXXVill{1925), 33 644.

* Page 117. “HI, 195.17-20) 204.1-6.

** GSee above, p. 116, n, 33.

® Reading fi# (Th 456.17) instead of s# (PIIL, j10.11),

™ See p. 46, above.

® That is, 36595P49™36%, Newcomb’s determination (1900) is 365924219879
= 36595487465 (American Ephemeris for 1940, p. xX),

* That is, the length of time by which the tropical year exceeds the Egyptian
year of exactly 365 days.



284" years between Hipparchus and Ptolemy, we shall find
that it was about 69° 9™.*® Then there would be a deficiency of
2¢ 6™, if we assumed that each year exceeded 365 days by
7 of a day. Let us therefore consider the remaining causes,
until we find a deficiency of only %o of a day.

At the time of Hipparchus’s observation, the true equinox
was about 21’ of the starry ecliptic west of the mean equinox,
and the sun was then in the same position as the mean
equinox. But in the time of Ptolemy the true equinox was about
447! east of the mean equinox. Therefore when the sun in the
time of Ptolemy arrived at the point 21° west of the mean
equinox, where the true equinoctial point had been in the time of
Hipparchus, the equinox did not occur. Nor did it occur when
the sun reached the mean equinox. But after it had moved 47
beyond the mean equinox, it came to the center of the earth,
as Pliny says,” that is, to the true equinoctial point. The sun,
then, had to pass through 1°8",** an arc which it completed in
its true motion in 1° 8™, Retaining this as a side, I ask how much
the angle of anomaly decreased in this instance, and I find that
about 1 minute of a day corresponds to it. Thus it is clear that
to the excess computed for the year as measured by the mean
equinox, there is an addition of 1¢ 9™.°° Ptolemy correctly
stated,”® then, that between his own observation and that of
Hipparchus, from true equinox to true equinox, there were
2857 70 18™ Therefore there was a deficiency of §7 minutes
of a day, the result of subtracting 1 9™ from 2° 6™, the def-
ciency which appeared above for the year as measured by the
mean equinox.

Let us now consider the deficiency of 7 days between

®In the table on p. 116, above, the interval between Hipparchus and Ptolemy
19 265 years, because Hipparchus is assigmed to 129 B.C. The present passage uses
an observation made by Hipparchus in 147 B.C.

¥285 X 14M34°% = 699114,

®ags X W%d = 519:15™

— 999
2d gm
® Natural History ii.19(17).81.
Bar’ 4 4¥ = 1° 8. 2 69dgm + 1dg0 = 40d18™.  ® HI, zo4.11-16.



Ptolemy and Albategnius. The situation 1s clear because the
interval of time, 743 years, 1s greater, and hence all the causes
will be more obvious. In the time of Ptolemy the mean equinox
was about 7°28” west of the first star of Aries.”® But since the
mean equinox moved from that position, as has been explained,
in the direction opposite to that of the sun, the result is that
between Ptolemy and Albategnius there was an excess of about
1807 14™ for the year as measured by the mean equinox.” Then
there will be a deficiency of §¢ 31™, if we compare the year as
measured by the mean equinox with the result obtained by
adding a day every four years’® Whereas in the time of
Ptolemy the true equinox was 47" east of the mean equinox, in
the time of Albategnius it was 22" west of the mean equinox.
Therefore the sun reached the true equinox before it reached
the mean equinox or the former position of the true equinox,”
in contrast with our previous example. Hence the time cor-
responding to 1°9"*® will be subtracted from the excess for the
year as measured by the mean equinox, and added to the defi-
ciency of §¢ 31™. We must deal in the same way with the varia-
tion in the angle of anomaly caused by the decrease in the
eccentricity, to which 30 minutes of a day correspond. Then
the change in the angle of anomaly, and the unequal motion
of precession, combined with the other two causes of the un-
equal motion of the sun, produce a further deficiency of 1¢ 30"
to be subtracted from the excess for the year as measured by
the mean equinox. Hence the true excess from the time of
Ptolemy to the time of Albategnius’s observation becomes
178% 44™.* But the addition of this further deficiency to
5% 31™ shows that the total deficiency was 7° 1™.** Q.E.D.

* For it had moved 3° s9’ from its position at the time of Hipparchus:
285 X go0” = 3° ¢71%.
®o43 X 14348 = ;809231
P 743 X W9 = 1g5945™
— 180 14

d,,m
5931
"Prowe states {PII, 312n) that Mistlin substituted aequimocsum for the
older reading aeguinoctialem. But beth of Mistlin’s editions show aeguinoctialem,

47+ 222 = 1° g".



It was a difhcult task to recover by this analysis the motions
of the fixed stars and of the sun, and through the computation of
these motions to attain a correct understanding of the length
of the tropical year. A boundless kingdom in astronomy has
God granted to my learned teacher. May he, as its ruler, deign
to govern, guard, and increase it, to the restoration of astro-
nomic truth. Amen.

I intended to report briefly to you, most learned Schéner,
the entire treatment of the motions of the moon and of the
remaining planets, as well as of the fixed stars and sun, in
order that you might understand what benefits to students of
mathematics and to all posterity will flow from the writings of
my teacher, as from a most plentiful spring. But when I saw
that my book was already growing excessively long, I decided
to compose a special “Account”*? of these topics. However, the
material which I thought must precede and prepare the way,
as 1t were, I shall set forth at this point. And I shall interweave
with my teacher’s hypotheses for the motions of the moon and
of the remaining planets certain general considerations, in
order that you may conceive greater hope for the entire work,
and understand why he was compelled to assume other hy-
potheses or theories.

Having stated at the beginning of this Accouns™® that my
teacher in writing his book imitated Ptolemy, I see that there
is practically nothing left for me to take up with you in refer-
ence to his method of improving the motions. For Ptelemy’s
tireless diligence in calculating, his almost superhuman accuracy
in observing, his truly divine procedure in examining and
investigating all the motions and appearances, and finally his
completely consistent method of statement and proof cannot be
sufficiently admired and praised by anyone to whom Urania
IS gracious.

In one respect, however, a burden greater than Ptolemy’s
confronts my teacher. For he must arrange in a certain and
consistent scheme or harmony the series and order of all the

™ Cf. above, p. 110, n. §-
1% Pages 109-10.



motions and appearances, marshalled on the broad battlefield
of astronomy by the observations of 2,000 years, as by famous
generals. Ptolemy, on the other hand, had the observations of
the ancients, to which he could safely entrust himself, for
scarcely a quarter of this period. Time, the true god and
teacher of the laws of the celestial state, discloses the errors of
astronomy to us. For an imperceptible or unnoticed error at
the foundation of astronomical hypotheses, principles, and
tables 1s revealed or greatly increased by the passage of time.
Therefore my teacher must not so much restore astronomy as
build 1t anew.

Ptolemy was able to harmonize satisfactorily most of the
hypotheses of the ancients—Timocharis, Hipparchus, and
others—with every inequality in the motions known to him
from so small an elapsed period of observation. Therefore he
quite rightly and wisely—a praiseworthy action—selected
those hypotheses which seemed to be in better agreement with
reason and our senses, and which his greatest predecessors had
employed.'*® Nevertheless, the observations of all scholars and
heaven itself and mathematical reasoning convince us that
Ptolemy’s'® hypotheses and those commonly accepted do not
suffice to establish the perpetual and consistent connection and
harmony of celestial phenomena and to formulate that har-
mony in tables and rules. It was therefore necessary for my
teacher to devise new hypotheses, by the assumption of which
he might geometrically and arithmetically deduce with sound
logic systems of motion like those which the ancients and Ptol-
emy, raised on high, once perceived “with the divine eye of the
soul,”® and which careful observations reveal as existing in
the heavens to those today who study the remains of the an-
cients. Surely students hereafter will see the value of Ptolemy
and the other ancient writers, so that they will recall these men
who have been until now excluded from the schools, and restore
them, like returned exiles, to their ancient place of honor. The

® Reading fueront (Th ¢58.27) instead of fuerunt (PIL, 314.6).

™ Reading Prolemaei (Th 458.28) instead of Prolemaeo (PII, 314.8).
¥ A Greek phrase guoted from the pseudo-Aristotelian D¢ mundo 391213,



poet says: “No one desires the unknown.,”'"® Hence it is not
strange that heretofore Ptolemy together with all antiquity
has lain ignored in obscurity, as doubtless you, most excellent
Schéner, together with other good and learned men have often
grieved.

General Considerations Regarding the Motions of the Moon,
Together with the New Lunar Hypotheses

The theory of eclipses all by itself seems to maintain respect
for astronomy among uneducated people; yet we see daily how
much it differs nowadays from common calculation in the pre-
diction of both the duration and extent of eclipses. In construct-
ing astronomical tables we should not, as we see certain writers
doing,'*” reject the precise observations of Ptolemy and other
excellent authorities as false and untrustworthy, unless the
passage of time discloses to us that some manifest error has
crept in. For what 1s more human than sometimes to be mis-
taken and deceived even by the appearance of truth, especially
in these dithcult, abstruse, and by no means obvious matters?

In his exposition of the motion of the moon, my teacher as-
sumes such theories and schemes of motion as make it clear
that the eminent ancient philosophers were not at all blind
in their observations. Just as we showed above that the increase
and decrease of the tropical year are regular, so, from a careful
investigation of the motions of the sun and moon, 1t is possible
to deduce for each age the true distances of the sun, moon, and
earth from one another, or the reason why the diameters of
the sun, moon, and earth’s shadow have been found different
at different times, and thus, in addition, to attain a correct un-
derstanding of the solar and lunar parallax,

In the Epitome, Book V, Proposition 22, Regiomontanus
says: “But it is noteworthy that the moon does not appear so
great at quadrature, when 1t 1s in the perigee of the epicycle,
whereas, if the entire disk were wisible, it should appear four

Y Ovid Ars amatoria iii.397.

¥ Doubtless Rheticus intended to include Werner in the group; cf. Copernicus’s
sharp pretests in the Letter agasnst Wernér, pp. 99-100, 10 %3, above,



times 1ts apparent size at opposition, when it 1s in the apogee of
the epicycle.”*® This difficulty was noticed by Timocharis and
Menelaus, who always use the same lunar diameter'® in their
observations of the stars. But experience has shown my teacher
that the parallax and size of the moon, at any distance from
the sun, differ little or not at all from those which occur at
conjunction and opposition, so that clearly the traditional ec-
centric cannot be assigned to the moon. He supposes therefore
that the lunar sphere encloses the earth together with''® its
adjacent elements, and that the center of the deferent is the
center of the earth, about which the deferent revolves uni-
formly, carrying the center of the lunar epicycle.

The second inequality, which appears in the distance of the
moon from the sun, he saves as follows. He assumes that the
moon moves on an epicycle of an epicycle of a concentric; that
15, to the first epicycle, which in general is in evidence at con-
junction and opposition, he joins a second small*'' epicycle
which carries the moon; and he shows that the ratio of the
diameter of the first epicycle to the diameter of the second is
as 1,097:237. The scheme of motions is as follows. The in-
clined arcle has the same motion as heretofore, save that its
equal periods are measured by the fixed stars. The deferent,
which 1s concentric, moves regularly and uniformly about its
own center (which is also the center of the earth), at the same
time rotating uniformly and regularly from the line of mean
motion of the sun. The first epicycle also revolves uniformly
about its own center; in its upper circoamference it carries the
center of the small second epicycle in precedence, in its lower
circumference, in consequence.'’® My teacher computes this
uniform and regular motion from the true apogee. This point

" The quotation is substantially correct. But the original has sux and opposi-
tum augis, for which Rheticus substitutes apogium and perigium (cf. above,
P. 34 N 117).

1% 3%6° (Th 235.8-11) ; the observations referred to are cited in HII, z5.15-4.8.

™ Prowe’s text (PII, 315.29) omits cum between ferram and adiacemtibus
(Th 459-30).

2 Reading paroum (Th 459.35) fer parum (PII, 3:6.3).

2 CE, above, pp. 68-69, n. 28.



1s marked on the upper circumference of the first epicycle by
a line drawn from the center of the earth through the center
of the first epicycle to its circumference. Starting from the
small epicycle’s true apogee, which is indicated on its circum-
ference by a line drawn from the center of the first epicycle
through the center of the second epicycle, the moon also moves
regularly and uniformly on the circumference of the smalli sec-
ond epicycle. The rule governing this motion is the following:
the moon revolves twice on its epicycle'® in one period of the
deferent, so that at every conjunction and opposition the moon
1s found in the perigee of the small epicycle, but at the quad-
ratures 1n its apogee. This is the device or hypothesis by which
my teacher removes all the aforementioned incongruities, and
which satisfies all the appearances, as he clearly shows, and as
can be inferred also from his tables.

Furthermore, most learned Schéner, you see that here in the
case of the moon we are liberated from an equant by the as-
sumption of this theory, which, moreover, corresponds to ex-
perience and all the observations. My teacher dispenses with
equants for the other planets as well, by assigning to each of
the three superior planets only one epicycle and eccentric; each
of these moves uniformly about its own center, while the planet
revolves on the epicycle in equal periods with the eccentric. To
Venus and Mercury, however, he assigns an eccentric on an
eccentric. The planets are each year observed as direct, station-
ary, retrograde, near to and remote from the earth, etc.'**
These phenomena, besides being ascribed to the planets, can be
explained, as my teacher shows, by a regular motion of the
spherical earth; that is, by having the sun occupy the center
of the universe, while the earth revolves instead of the sun on
the eccentric,'™ which it has pleased him to name the great

" While discarding an unnecessary emendation of Mistlin’s, Prowe’s text

(P11, 316.20) inserts parvo, for which there is no warrant in the Basel edition
of 1566 (p. z01v).

™ Reading #fc. with the editions of 1566 (p. zo0zr), 1596 (p. 110), and 1621
(p. 107), instead of & cum (PIL, 317.x0; Th 460.24).

¥ This is the first indication in the Narratio prima that the astronomy of Co-
pernicus involves heliocentrism and a moving earth. Rheticus evidently deemed



circle. Indeed, there is something divine in the circumstance
that a sure understanding of celestial phenomena must depend
on the regular and uniform motions of the terrestrial globe
alone.

The Principal Reasons Why We Must Abandon the
Hypotheses of the Ancient Astronomers

In the first place, the indisputable precession of the equi-
noxes, as you have heard, and the change in the obliquity of the
ecliptic persuaded my teacher to assume that the motion of the
earth could produce most of the appearances in the heavens, or
at any rate save them satisfactorily.

Secondly, the diminution of the eccentricity of the sun 1is
observed, for a similar reason and proportionally, in the eccen-
tricities of the other planets.

Thirdly, the planets evidently have the centers of their
deferents in the sun, as the center of the universe. That the
ancients, not to mention the Pythagoreans for the moment,
were aware of this fact 1s sufhciently clear for example from
Pliny’s statement, following undoubtedly the best authorities,
that Venus and Mercury do not rccede further from the sun
than fixed, ordained limits because their paths encircle the
sun;''® hence these planets necessarily share the mean motion
of the sun. As Pliny says,"*" the course of Mars is hard to trace.
In addition to the other difficulties in the correction of its mo-
tion, Mars unquestionably shows a parallax sometimes greater

it advisable, before introducing these ideas, to paint the portrait of Copernicus
as a great astronomer, who made careful observations and painstaking calcula.
tions, who studied thoroughly the work of his predecessors and respected, in par-
ticular, the authority of Ptolemy, The cautiousness of Rheticus stands in striking
contrast to the forthright procedure of Copernicus in the Commentariolus (cf.
PP, 57-59, above).

1% Natural History ii.t7{tq).72. It is more likely that Pliny’s comnversas absidas
meant simply “different courses,” i.e., orbits unlike those of the superior planets;
cf. Rackham’s translation in the Loeb Clasical Library (London, 1958). Rheti-
cus’s understanding of the passage was governed by Th 27.18-25. For Kepler’s
comment on this obscure section in Pliny and on Copernicus’s interpretation of
it see his Opara, ed. Frisch, I, 271-72.

Y Natural History i.x7(ts5).77.



than the sun’s, and therefore it seems impossible that the earth
should occupy the center of the universe. Although Saturn and
Jupiter, as they appear to us at their morning and evening
rising, teadily yield the same conclusion, it 1s particularly and
especially supported by the variability of Mars when it rises.
For Mars, having a very dim light, does not deceive the eye
as much as Venus or Jupiter, and the variation of its size 1s
related to its distance from the earth. Whereas at its evening
rising Mars seems to equal Jupiter in size, so that it 1s differ-
entiated only by its fiery splendor, when 1t rises in the morn-
ing just before the sun and 1s then extinguished in the light
of the sun, it can scarcely be distinguished from stars of the
second magnitude. Consequently at its evening rising 1t ap-
proaches closest to the earth, while at its morning rising it is
furthest away; surely this cannot in any way occur on the
theory of an epicycle. Clearly then, mn order to restore the
motions of Mars and the other planets, a different place must
be assigned to the earth.

Fourthly, my teacher saw that only on this theory could all
the arcles in the universe be satisfactorily made to revolve
uniformly and regularly about their own centers, and not about
other centers—an essential property of circular motion.

Fifthly, mathematicians as well as physicians must agree with
the statements emphasized by Galen here and there: “Nature
does nothing without purpose”**® and “So wise is our Maker
that each of his works has not one use, but two or three or often
more.”'** Since we see that this one motion of the earth satisfies
an almost infinite number of appearances, should we not at-
tribute to God, the creator of nature, that skill which we ob-
serve in the common makers of clocks? For they carefully avoid
inserting in the mechanism any superfluous wheel or any whose
function could be served better by another with a slight change

Y% De usy partivm x.14 (ed. Helmreich, Leipzig, 1507-9, II, 109.2). Rheticus
quotes the Greek text, the first edition (Venice, 1525) of which was available to
him, as was also the Basel edition of 1538. The words quoted appear in the
1525 edition, Vol. I, fol. Hyv.47 (= fol. 63v of the separate pagination for the
De usu partium).

0 1bid, x.15 (ed. Helmreich, I, 111.5-83 1525 ed., Vol. I, fol. H8r.t4-16),
Rheticus accommodates the quotation to the structure of his own sentence.



of position. What could dissuade my teacher, as a mathema-
tician, from adopting a serviceable theory of the motion of the
terrestrial globe, when he saw that on the assumption of this'®
hypothesis there sufficed, for the construction of a sound science
of celestial phenomena, a single eighth sphere, and that mo-
tionless, the sun at rest in the center of the universe, and for
the motions of the other planets, epicycles on an eccentric or
eccentrics on an eccentric or epicycles on an epicycle? Moreover,
the motion of the earth in its circle produces the inequalities of
all the planets except the moon; this one motion alone seems
to be the cause of every apparent inequality at a distance from
the sun, in the case of the three superior planets, and in the
neighborhood of the sun, in the case of Venus and Mercury.
Finally, this motion makes it possible to satisfy each of the
planets by only one deviation in latitude of the deferent of the
planet. Hence it is particularly the planetary motions that
require such hypotheses.

Sixthly and lastly, my teacher was especially influenced by
the realization that the chief cause of all the uncertainty in
astronomy was that the masters of this science (no offense is
intended to divine Ptolemy, the father of astronomy) fashioned
their theories and devices for correcting the motion of the
heavenly bodies with too little regard for the rule which re-
minds us that the order and motions of the heavenly spheres
agree 1n an absolute system. We fully grant these distinguished
men their due honor, as we should. Nevertheless, we should
have wished them, in establishing the harmony of the mortions,
to imitate the musicians who, when one string has either tight-
ened or loosened, with great care and skill regulate and adjust
the tones of all the other strings, until all together producc the
desired harmony, and no dissonance is heard in any. If Albateg-
nius, to speak of him for the moment, had followed this precept
in his work, we should doubtless have today a surer under-
standing of all the motions. For it is likely that the Alfonsine
Tables drew heavily from him; and since this one rule was
neglected, we should have had to face at some time, if we
intend to speak the truth, the collapse of all.astronomy.

M Reading faki (Th 461.31) instead of falia (PII, 319.13).



Under the commonly accepted principles of astronomy, it
could be seen that all the celestial phenomena conform to the
mean motion of the sun and that the entire harmony of the
celestial motions is established and preserved under its control.
Hence the sun was called by the ancients leader, governor of
nature, and king. But whether it carries on this administration
as God rules the entire universe, a rule excellently described
by Aristotle in the De mundo,’® or whether, traversing the
entire heaven so often and resting nowhere, it acts as God’s
administrator in nature, seems not yet altogether explained and
settled. Which of these assumptions is preferable, I leave to
be determined by geometers and philosophers (who are math-
ematically equipped). For in the trial and decision of such
controversies, a verdict must be reached in accordance with not
plausible opinions but mathematical laws (the court in which
this case 1s heard). The former manner of rule has been set
aside, the latter adopted. My teacher is convinced, however,
that the rejected method of the sun’s rule in the realm of na-
ture must be revived, but in such a way that the received and
accepted method retains its place. For he is aware that in hu-
man affairs the emperor need not himself hurry from aty to
city 1n order to perform the duty imposed on him by God; and
that the heart does not move to the head or feet or other parts
of the body to sustain'* a living creature, but fulfills its func-
tion through other organs designed by God for that purpose.

Now my teacher concluded that the mean motion of the sun
must be the sort of motion that is not only established by the
imagination, as in the case of the other planets, but 1s self-
caused, since 1t appears to be truly “both choral dancer and
choral leader.” He then showed that his opinion was sound
and not inconsistent with the truth, for he saw that by his
hypotheses the efhcient cause of the uniform motion of the sun
could be geometrically deduced and proved. Hence the mean
motion of the sun would necessarily be perceived in all the

" Chap. vi. This work is now athetized; see Wilthelm Capelle, Newe Jabr-
biicker fiir das klassische Altertum, XV{1g05), 532.

** Reading comservationem (Th 462.37) instead of comversationem (PII,
321.4).



motions and appearances of the other planets in a definite man-
ner, as appears i each of them. Thus the assumpuon of the
motion of the earth on an eccentric provides a sure theory of
celestial phenomena, in which no change should be made with-
out at the same time re-establishing the entire system, as would
be fitting, once more on proper ground. While we were unable
from our common theories even to surmise this rule by the sun
in the realm of nature, we ignored most of the ancient encomia
of the sun as poetry. You see, then, what sort of hypotheses
for saving the motions my teacher had to assume under these
circumstances.

Transition to the Explanation of the New Hypotheses
for the Whole of Astronomy

I interrupt your thoughts, distinguished sir, for I am aware
that while you listen to the reasons, investigated by my teacher
with remarkable learning and great devotion, for revising the
astronomical hypotheses, you thoughtfully consider what
foundation may finally prove to be suitable for the hypotheses
of astronomy reborn. But the men who endeavor to pull all
the stars together around in the ether in accordance with their
own opinton, as though they had put chains upon them, merit
pity rather than resentment, in your judgment as in that of
other true mathematicians and all good men. You are not un-
acquainted with the importance to astronomers of hypotheses
or theories, and with the difference between a mathematician
and a physicist."® Hence you agree, I feel, that the results to
which the observations and the evidence of heaven itself lead
us again and again must be accepted, and that every difhculty
must be faced and overcome with God as our guide and math-
ematics and tireless study as our companions.

Accordingly, anyone who declares that he must be mindful
of the highest and principal end of astronomy will be grateful

** Presumably a reference to Aristotle’s Physics 193b22-23, and to Simplicivg’s
Commentary on Aristotle’s Physics, second comment on Book ii.z (Commentaria
in Aristotelem Graeca, Vol. IX, ed. H. Diels, Berlin, 1882, pp. 290-93); the
first edition of Simplicius’s Commentary (Venice, 1§26) was available to Rheticus
and Schoner,



with us to my teacher and will consider as applicable to himself
Aristotle’s remark: “When anyone shall succeed in finding
proofs of greater precision, gratitude will be due to him for
the discovery.”*** The examples of Callippus and Aristotle®
assure us that, in the effort to ascertain the causes of the phe-
nomena, astronomy must be revised as unequal motions of the
heavenly bodies are encountered. Hence I may hope that Aver-
roes, who played the role of the severe Aristarchus'® to Ptol-
emy, would not receive the hypotheses of my teacher harshly,
if only he would examine natural philosophy patiently. In my
opinion, Ptolemy was not so bound and sworn to his own hy-
potheses that, were he permitted to return to life, upon seeing
the royal road blocked and made impassable by the ruins of so
many centuries, he would not seek another road over land and
sca to the construction of a sound science of celestial phenomena,
since he could not rise through the air and open sky to the
destred goal. For what else shall I say of the man who wrote
the following words:

Propositions assumed without proof, if once they are perceived to be in
agreement with the phenomena, cannot be established without some
method and reflection; and the procedure for apprehending them is
hard to explain, since in general, of first principles, there naturally is
either no cause or one difficult to set forth.™*

How modestly and wisely Aristotle speaks on the subject of
the celestial motions can be seen everywhere in his works. He
says 1n another conhection: “It is the mark of an educated man
to look for precision in each class of things just so far as the

™ De caelo ii.s 287b34-288ar (J. L. Stocks’s rendering in the Oxford trans-
lations of the works of Aristotle, 1930, Vol. II).

® Metaphysics xii.8 10y3bjz-107425.

¥ For Averroes as an adversary of the Ptolemaic astronomy see pp. 194-9s,
below, and Duhem, Le Systésme du monde, 11, 133-39. In a long article devoted to
the relatien between Copernicus and the astronomer Aristarchus of Samos, Brach-
vogel failed to recognize that the Aristarchus of our passage is unquestionably Aris-
tarchus of Alexandria, the severe critic of Homer, not Aristarchus of Samos (ZE,
XXV[1933-351, 703, n 15)-

¥ HII, 212.11-16. Rheticus presented to Copernicus (PI', 411) a copy of the
first edition of the Greek text of the Symtaxis (Basel, 1538); the paseage quoted
begins at the foot of the page numbered (incorrectly) 219.



nature of the subject admits.”**® Now in physics as in astron-
omy, one proceeds as much as possible from effects and observa-
tions to principles. Hence I am convinced that Aristotle, who
wrote careful discussions of the heavy and the light, circular
motion, and the motion and rest of the earth,'* if he could
hear the reasons for the new hypotheses, would doubtless hon-
estly acknowledge what he proved in these discussions, and
what he assumed as unproved principle. I can therefore well
believe that he would support my teacher, inasmuch as the
well-known saying attributed to Plato™ is certainly correct:
“Aristotle 1s the philosopher of the truth.” On the other hand,
were he to burst forth in harsh language, it would be only to
lament bitterly, I am persuaded, the condition of this most
beautiful part of philosophy in the following terms: “It has
been said very well by Plato'! that ‘geometry and the studies
that accompany it dream about being, but the clear waking
vision of it is impossible for them as long as they leave the
assumptions which they employ undisturbed and cannot give
any account of them’”; and he would add: “We must be
deeply grateful to the immortal gods for the knowledge of
such a theory of the phenomena.”

But since these remarks are less appropriate here than in a
certain other treatise,®® I shall proceed to set forth the re-
maining hypotheses of my teacher in an open and orderly
manner, in an endeavor to throw some light on my previous
statements.

The Arrangewment of the Universe

Aristotle says: “That which causes derivative truths to be
true is most true.”'®® Accordingly, my teacher decided that he

¥ Nicomackean Ethics 1094b23-25 (W. D. Ross’s translation, Oxford, 1925).

™ De caclo i.z-4; ii.3, 13-14; Physics viii.8-9.

** The authentic works of Plato contain no reference to the philosopher Aris-
totle.

B Republic viiiy 533B-C, slightly altered (P, Shorey’s translation, Loeb
Classical Library, London, 1930-33).

*# Probably Rheticus has in mind his projected “Second Account.”

13 Metaphysics i minor.t 9g3bz26-27 (W. D. Ross’s translation, Oxford, 1928).
Although Rheticus usually quotes frorm Greek authors in the original language,
in the present instance he is using Bessarion’s Latin translation of the Metaphysics.



must assume such hypotheses as would contain causes capable
of confirming the truth of the observations of previous cen-
turies, and such as would themselves cause, we may hope, all
future astronomical predictions of the phenomena to be found
true.

First, surmounting no mean difficulties, he established by
hypothesis that the sphere of the stars, which we commonly
call the eighth sphere, was created by God to be the region
which would enclose within its confines the entire realm of
nature, and hence that it was created fixed and immovable as
the place of the universe. Now motion is perceived only by
comparison with something fixed; thus sailors on the sea, to

whom

land is no longer

Visible, only the sky on all sides and on all sides the water'!

are not aware of any motion of their ship when the sea i1s un-
disturbed by winds, even though they are borne along at such
high speed that they pass over several long miles in an hour.
Hence this sphere was studded by God for our sake with a
large number of twinkling stars, in order that by comparison
with them, surely fixed in place, we might observe the posi-
tions and motions of the other enclosed spheres and planets.
Then, in harmony with these arrangements, God stationed
in the center of the stage His governor of nature, king of the
entire universe, conspicuous by its divine splendor, the sun

To whose rhythm the gods move, and the world
Receives its laws and keeps the pacts ordained.*

The other spheres are arranged in the following manner.
The first place below the firmament or sphere of the stars falls
to the sphere of Saturn, which encloses the spheres of first
Jupiter, then Mars; the spheres of first Mercury, then Venus

™ Vergil Aeneid iii.19z-93.

'* Giovanni Gioviano Pontano, Uramia or De stellis i.240-41 (Florence, 1514,
p. 7r) ; Pontano’s poems were reprinted in foanmsnis loviani Pontani carmina (ed.
Benedetto Soldati, Florence, 1goz), where the quoted lines appear on p. 10.
Copernicus owned a copy of the selection of Pontano’s prose works which was
printed at Venice in rsor (PI%, 417).



surround the sun; and the centers of the spheres of the five
planets are located in the neighborhood of the sun. Between
the concave surface of Mars’ sphere and the convex of Venus’,
where there i1s ample space, the globe of the earth together
with its adjacent elements, surrounded by the moon’s sphere,
revolves in a great circle which encloses within itself, in add:-
tion to the sun, the spheres of Mercury and Venus, so that the
earth moves among the planets as one of them.

As I carefully consider this arrangement of the entire uni-
verse according to the opinion of my teacher, I realize that
Pliny set down an excellent and accurate statement when he
wrote: “To inquire what is beyond the universe or heaven, by
which all things are overarched, is no concern of man, nor can
the human mind form any conjecture concerning this question.”
And he continues: “The universe 1s sacred, without bounds,
all 1n all; indeed, it 1s the totality, finite yet similar to the
infinite, etc.”*® For if we follow my teacher, there will be
nothing beyond the concave surface of the starry sphere for
us to investigate, except insofar as IHoly Writ has vouchsafed us
knowledge, in which case again the road will be closed to plac-
ing anything beyond this concave surface. We will therefore
gratefully admire and regard as sacrosanct all the rest of na-
ture, enclosed by God within the starry hcaven. In many ways
and with innumerable instruments and gifts Iie has endowed
us, and enabled us*** to study and know nature; we will ad-
vance to the point to which IHe desired us to advance, and we
will not attempt to transgress the limits imposed by Him.

That the universe is boundless up to its concave surface, and
truly similar to the infinite is known, moreover, from the fact
that we see all the heavenly bodies twinkle, with the exception
of the planets including Saturn, which, being the nearest of
them to the firmament, revolves on the greatest circle. But this
conclusion follows far more clearly by deduction from the hy-
potheses of my teacher. For the great circle which carries the

“ Abridged from Natural History ii.t.r-z.

T Prowe’s text (PII, 326.18) omits nos between sdoneos and effecit (Th
466.20).



earth has a perceptible ratio to the spheres of the five planets,
and hence every inequality in the appearances of these planets
is demonstrably derived from their relations te the sun. Every
horizon on the earth, being a great circle of the universe, di-
vides the sphere of the stars into equal parts. Equal periods in
the revolutions of the spheres are shown to be measured by the
fixed stars. Consequently it is quite clear that the sphere of the
stars 1s, to the highest degree, similar to the infinite, since by
comparison with it the great circle vanishes, and all the phe-
nomena are observed exactly as if the earth were at rest in the
center of the universe.

Moreover, the remarkable symmetry and interconnection of
the motions and spheres, as maintained by the assumption of
the foregoing hypotheses, are not unworthy of God’s work-
manship and not unsuited te these divine bodies. These rela-
tions, 1 should say, can be conceived by the mind (on account
of its affinity with the heavens) more quickly than they can be
explained by any human utterance, just as in demonstrations
they are usually impressed upon our minds, not so much by
words as by the perfect and absolute ideas, 1f 1 may use the
term, of these most delightful objects. Nevertheless it i1s pos-
sible, in a general survey of the hypotheses, to see how the
inexpressible harmony and agreement of all things manifest
themselves.

For in the common hypotheses there appeared no end to the
invention of spheres; moreover, spheres of an immensity that
could be grasped by neither sense nor reason were révolved
with extremely slow and extremely rapid motions. Some writ-
ers stated that the daily motion of all the lower spheres is
caused by the highest movable sphere;**® but when a great
storm of controversy raged over this question, they could not
explain why a higher sphere should have power over a lower.
Others, like Eudoxus™® and those who followed him, assigned
to each planet a special sphere, the motion of which caused the

% See Dreyer, Planetary Systems, p. g1.

 See Aristotle Metaphysics xii.8 ro73bi7-26; and Simplicius’s Commentary
on Aristotle’s De caelo (Comvmentaria in Aristotelern Graeca, Vol. VII, ed. Hei-



planet to revolve about the earth once in a natural day. More-
over, ye immortal gods, what dispute, what strife there has
been until now over the position of the spheres of Venus and
Mercury, and their relation to the sun. But the case is still
before the judge. Is there anyone who does not see that it is
very difficult and even impossible ever to settle this question
while the common hypotheses are accepted?! For what would
prevent anyone from locating even Saturn below the sun, pro-
vided that at the same time he preserved the mutual propor-
tions of the spheres and epicycle, since in these same hypotheses
there has not yet been established the common measure of the
spheres of the planets, whereby each sphere may be geo-
metrically confined to its place? I refrain from mentioning here
the vast commotion which those who defame this most beauti-
ful and most delightful part of philosophy have stirred up on
account of the great size of the epicycle of Venus, and on ac-
count of the unequal motion, on the assumption of equants, of
the celestial spheres about their own centers.

However, in the hypotheses of my teacher, which accept, as
has been explained, the starry sphere as boundary, the sphere
of each planet advances uniformly with the motion assigned to
it by nature and completes its period without being forced into
any inequality by the power of a higher sphere. In addition,
the larger spheres revolve more slowly, and, as is proper, those
that are nearer to the sun, which may be said to be the source
of motion and light, revolve more swiftly. Hence Saturn, mov-
ing freely in the ecliptic, revolves in thirty years, Jupiter in
twelve, and Mars in two. The center of the earth measures the
length of the year by the fixed stars. Venus passes through the
zodiac in nine months, and Mercury, revolving about the sun
on the smallest sphere, traverses the universe in eighty days.
Thus there are only six moving spheres which revolve about

berg, Berlin, 1894, 493.r1-15; 494.12-18, 23-26; 495.8-9, 17+223 496.15-19).
The first edition of Simplicius’s Commentary (Venice, 1526) was available to
Rheticus; it was a Greek version, dene by Bessarion or one of his circle, of Wil-
liam of Moerbeke’s Latin translatien (Ssteungsberichte dar 4kademie der Wissen-

schaften wy Berlin, 1892, pp. 74-75).



the sun, the center of the universe. Their common measure is
the great circle which carries the earth, just as the radius of the
spherical earth is the common measure of the circles of the
moon, the distance of the sun from the moon, etc.

Who could have chosen a more suitable and more appropri-
ate number than six? By what number could anyone more easily
have persuaded mankind that the whole universe was divided
into spheres by God the Author and Creator of the world? For
the number six i1s honored beyond all others in the sacred
prophecies of God and by the Pythagoreans and the other phil-
osophers. What i1s more agreeable to God’s handiwork than
that this first and most perfect work should be summed up in
this first and most perfect number?** Moreover, the celestial
harmony 1s achieved by the six aforementioned movable
spheres. For they are all so arranged that no immense interval
1s left between one and another; and each, geometrically de-
fined, so maintains its position that if you should try to move
any one at all from its place, you would thereby disrupt the
entire system.

But now that we have touched on these general considera-
tions, let us proceed to an exposition of the circular motions
which are appropriate to the several spheres and to the bodies
that cleave to and rest upon them. First we shall speak of the
hypotheses for the motions of the terrestrial globe, on which

we have our being.

The Motions Appropriate™ to the Great Circle and Its
Related Bodies. The T hree Motions of the Earth:
Daily, Annual, and the Motion in Declination

Following Plato and the Pythagoreans, the greatest math-
ematicians of that divine age, my teacher thought that in order

1 This passage, in which Rheticus reveals his acceptance of number mysticism,
finds no parallel in the works of Copernicus; cf. above, p. 122, n. §7. For an
excellent discussion of the metamathematical superstructure, erected in the early
modern period on the basis of Pythagorean and Platonic philosophy, see Edward
W. Strong, Procedures and Metaphysics (Berkeley, Calif., 1916), chap. viii.

1 Reading competant (Th 468.9) instead of computant (PII, 32¢.23).



to determine the causes of the phenomena circular motions
must be ascribed to the spherical earth.'*® He saw (as Aristotle
also points out***) that when one motion is assigned to the
earth, 1t may properly have other motions, by analogy with
the planets. He therefore decided to begin with the assumption
that the earth has three motions, by far the most important
of all.

For 1n the first place, having assumed the general arrange-
ment of the universe described above, he showed that, enclosed
by its poles within the lunar sphere, the earth, like a ball on a
lathe, rotates from west to east, as God’s will ordains; and that
by this motion, the terrestrial globe produces day and night
and the changing appearances of the heavens, according as 1t
1s turned toward the sun. In the second place, the center of the
earth, together with its adjacent elements and the lunar sphere,
1s carried uniformly in the plane of the ecliptic by the great
arcle, which I have already mentioned more than once,"** in
the order of the signs. In the third place, the equator and the
axis of the earth have a variable inclination to the plane of the
ecliptic and move in the direction opposite to that of the motion
of the center, so that on account of this inclination of the earth’s
axis and the immensity of the starry sphere, no matter where
the center of the earth may be, the equator and the poles of the
earth are almost invariably directed to the same points in the
heavens. This result will ensue if the ends of the earth’s axis,
that s, the poles of the earth, are understood to move daily 1n
precedence a distance almost exactly equal to the motion of the
center of the earth in consequence on the great circle, and to
describe about the axis and poles of the great circle or ecliptic
small circles equidistant from them.

But to these motions we should add, in the opinion of my
teacher, two librations of the poles of the earth and the two
motions, the one uniform and the other unequal, with which

" *Whether Plate held that the earth is at rest or in motion is much disputed;
see Thomas L. Heath, Aristarchus of Samos (Oxford, 1913), pp. 174-85.

" De caelo H.14 296a24-296b3,

*Pages 135-36, 144, 145, 147.



the center of the great circle advances in the ecliptic;'*® let us
also recall what was said above'*® concerning the motions of
the moon about the center of the earth. We shall then have,
most learned Schéner, a true system of hypotheses for deducing
in its entirety what the moderns call the doctrine of the first
motion, which at present is derived from all sorts of motions
of the starry sphere; and for determining the causes of the
motions and phenomena of the sun and moon, as they have
been carefully observed by scholars for the past two thousand
years. I may merely mention, since I shall have occasion to deal
with the topic more fully below,'’ that the motion of the great
circle unquestionably affects the appearances of the other five
planets. With so few motions and, as it were, with a single
circle 1s so vast a subject comprehended.

In the doctrine of the first motion nothing need be changed.
For, utilizing the properties of things which are interrelated,
we shall determine the maximum obliquity and in the same
way investigate the declinations of the remaining parts of the
ecliptic, right ascensions, the theory of shadows and gnomons
in all regions of the earth, the lengths of days, oblique ascen-
stons, the rising and setting of the stars, etc. However, our
hypotheses differ from those of antiquity in that in ours, as
opposed to the views'®® of the ancients, no circle except the
ecliptic 1s properly described by the imagination on the starry
sphere. The other crcles, to wit, the equator, the two tropics,
arctics and antarctics, horizons, meridians, and all the others
connected with the doctrine of the first motion, e.g., vertical
circles, parallels of altitude, colures etc. are properly traced
upon the globe of the earth, and transferred by a certain rela-
tion to the heavens.

In addition to the apparent daily revolution about the earth,
which the sun shares with all the stars and the other planets,
there are those phenomena related to the sun which Ptolemy
and the moderns have attributed to the sun’s own motions and
also those which are observed to occur in connection with the

¥ See pp. 121, 123, above. * Pages 134-335. “TPages 168-25.
¥ Reading praescriptum (Th 469.9) instead of praeceptum (PII, 331.12).



shift of the solstitial and equinoctial points, the distance of the
stars from them, and the motion of the apogee among the fixed
stars. All these phenomena present themselves to our eyes as
if the sun and the sphere of the stars move. For the way in
which, according to common belief, these bodies emerge in the
east or rise, gradually climb above the horizon until they reach
the meridian, from which they descend in like manner, and
then traverse the lower hemisphere, daily completing their
diurnal revolutions, is caused, clearly enough, by the first mo-
tion which my teacher, in company with Plato,’* assigns to
the earth.

The sun seems to us to move in the order of the signs, and
we persuade ourselves that by this motion 1t describes the
ecliptic and determines the length of the year. But these phe-
nomena can be produced by the second motion which my
teacher attributes to the earth. For as the earth moves on the
great circle and comes to a position between the constellation
Libra and the sun, those of us who suppose the earth to be at
rest think that the sun is in the constellation Aries, because a
line drawn from the center of the earth through the sun to the
sphere of the stars strikes that constellation. Then, as the earth
advances to Scorpio, the sun seems to be in Taurus, and so to
traverse the zodiac.'® I assert, however, that with the sun
at rest this motion is properly the earth’s. And the sidereal
year is the time in which the center of the earth or, in appear-
ance, of the sun completes a single revolution from a star to
the same star.

The third motion of the earth produces the regular, cyclic
changes of season on the whole earth; for it causes the sun and
the other planets to appear to move on a circle oblique to the
equator, and the sun to appear to the several regions of the
earth exactly as it would if the earth were by hypothesis at
the center of the universe and the planets moved on an oblique
arcle. For on account of the above-mentioned motion of its

“*CtL. above, p. 148, D, r4z.
™ Prowe’s text (PIl, 332.9) inserts fofum, for which there is no warrant in

the Basel edition of 1566 and Mistlin’s editions of 1596 and 1621.



poles, the plane of the equator, in comparison with the sun,
turns away from the plane of the ecliptic and returns toward it,
or as the Greeks say Mofelera:c «al éyxdve.® Hence the same
inclination of the equator to the ecliptic recurs at almost the
same points on the ecliptic, and the poles of the daily rotation
are always in very nearly the same spot on the starry sphere.

Now when the equator attains its greatest inclination to the
plane of the ecliptic, that is, to the sun, the line drawn from
the center of the sun to the center of the earth cuts a cone in
the globe of the earth as it performs its daily rotation, thereby
describing the tropics. Furthermore, when the plane of the
equator returns to the plane of the ecliptic, that 1s, to the sun,
all over the earth the equinox occurs, since the line of which I
just spoke divides the globe of the earth along the equator
into two hemispheres. But the other parallels of latitude are
marked on the earth according as the motions of the equator
away from and toward the sun (or to use Ptolemy’s terms
Mtwais kai éyshows) are combined. The arctics and antarctics
are described by their points of contact with the horizons.'*®
The poles of the ecliptic, in the opinion of my teacher, describe
the polar circles equidistant from the poles of the equator. The
great circle of the earth’s globe which passes through the poles
of the equator and the aforesaid equidistant poles of the ecliptic
s the solstitial colure; and another great circle, intersecting the
first in the poles of the equator at spherical right angles, is the
equinoctial colure. And it 1s to be understood that in this man-
ner the circles of any point at all and any other circles what-
soever are readily traced upon the earth and thence transferred
to the overarching heavens.

Moreover, in obedience to the command given by the ob-
servations, the globe of the earth has risen to the circumference
of the eccentric, while the sun has descended to the center of
the universe. Now, in the common hypotheses the center of
the eccentric was situated in our age between the center of the
entire Universe (which in these hypotheses was also the center

™ For example, Systaxis xiii.x (HIL, 528.x1-16) and xdii passim.
"™ Cf. Th y4.23-28.



of the earth) and the constellation Gemini. Conversely, in my
teacher’s hypotheses the center of the great circle, which I re-
ferred to in the beginning of this Accewnt™ as the center of
the eccentric, is found between the sun, which is the center of
the universe according to my teacher, and the constellation
Sagittarius; and the diameter of the great circle that passes
through the center of the earth represents the line of mean
motion of the sun. Since the line drawn from the center of the
earth through the center of the sun to the ecliptic determines
the true place of the sun, it is not difhcult to see how in the
system of Ptolemy and the moderns the sun is conceived to
move unequally in the ecliptic and how the angle of inequality
from the mean motion is investigated geometrically. When the
earth 1s in the higher apse of the great circle, the sun is thought
to be at the apogee on the eccentric, and, conversely, when the
earth is in the lower apse, the sun seems to be in perigee.

But the manner in which the fixed stars appear to alter their
distance from the equinoctial and solstitial points, and the
greatest obliquity of the sun to vary, etc. (my treatment of
these topics at the beginning of the Account is drawn from
Book 1II of my teacher’s work) has been shown by him to
depend on the motion in declination, which I have set forth in
a general way, and on two mutually interacting librations. ¥From
the poles which were referred to just above as the equidistant
poles of the ecliptic, in both hemispheres let 23°40'1%¢ of a
great circle be measured off, and let two points be marked there
in order to designate the poles of the mean equator. L.et the
two colures be drawn in the proper manner to indicate the mean
solstices and equinoxes. IFor purposes of study, let these points
be tmagined and indicated on a small sphere which encloses
the globe of the earth and which, by its uniform motion, pro-
duces the third motion assigned to the earth.

Now, with the center of the earth between the sun and the
constellation Virgo, let the mean equator be inclined or oblique
to the sun, and let the line of the true place of the sun pass

8 Page 111.
™ The mean value between the maximum of 23° §2° and minimum of 23° =28,



through the common intersection of the plane of the ecliptic,
the mean equator, and the mean equinoctial colure. Let the
mean vernal equinox and true vernal equinox occur simul-
taneously where required by the scheme of motions, as will be
crystal clear from what follows. The center of the earth ad-
vances from its position §9’8”11”/**® each day with uniform
motion as reckoned by the fixed stars. In addition to this mo-
tion of the center of the earth, let the mean vernal point move
an equal distance in precedence; and since 1t moves at a slightly
faster rate, let it describe an angle greater by about 8’”’. This
1s the reason why 1 said just above that the motion in declina-
tion 1s almost exactly equal to the uniform motion of the center
of the earth as reckoned by the fixed stars. But there is a con-
tinual increase in the angle made by the vernal point of the
mean equator as compared with the center of the earth (in
accordance with the rule given above). Hence, before the cen-
ter of the earth finally returns to the point on the ecliptic
whence it set out, the line of the true place of the sun reaches
the mean equinox, and the stars seem to us to move with a
mean or uniform motion in consequence, to the amount of the
precession. This precession, as I stated in the beginning,™® 1s
about §0”""" in an Egyptian year, and in 25,816 Egyptian years
it performs a complete revolution. Thus it 1s clear what the
mean equinox is, what the mean precession is, and how these
phenomena can be presented to the eyes as though by a me-
chanical device.

Librations

Let there be*® a straight line 4 4 of finite length, for ex-
ample 24’, divided at 4 into two equal parts. Then with the
point of the compass placed at d, describe a circle ¢ ¢ with
the radius 4 ¢ directed to 4 and 6’ long (that is, a quarter of the
entire length). Construct a second circle of the same size in this

red

¥ Although PII, 334-14 and Th 471.12 give 59" 87 2’ the correct reading
is unquestionably s¢’ 8" 11" {cf. Th 196.9-11, 198.5)}. The error undoubtedly
arose because 11 was interpreted as a2 Roman numeral, whereas it was Arabic
(cf. 1566 ed., p. 205v; 1596 ed., p. 124; and 1621 ed,, p. 123).

™ Pages 113-14. g X 365 = 48%%”. ' Reading Sé (‘Th 471.27)-



figure;'*® and let the two small circles (to use this term for the
moment) be so placed that each 1s attached to the circumference
of the other and can move freely about its own center. Call that
circle the first which carries the other on its circumference, and
let it be fastened to the center of the line z 4 at the point 4.
Denote the center of the second small circle by £, and any point
chosen at random on its circumference by 4. Place the pont 4

of the second small circle upon g, the end of the given line;
and f upon ¢. Let % describe in one direction, about f as center,
an angle twice as great as that described in equal time by f
about 4 in the opposite direction. Clearly, then, in one revolu-
tion of the first small circle the point % twice describes and
traverses the line ¢ 4, and the second small circle revolves

twice.'*

While thus describing a straight line through the combina-
tion of two circular motions, the point 42 moves most slowly
near the ends ¢ and 4, and more rapidly near the center 4. It

has therefore pleased my teacher to name this motion of the
point 4 along the line ¢ & a “libration,” because it resembles

the motion of objects hanging in the air.”® It is also called

" Prowe altered “ab” (Th 471.30) to a & (PII, 335.6), thereby making a
difficult passage hopeless.

™ For a detailed explanation of this device see above, p. 88, n. 100.

™ In the corresponding passage of De rew. Copernicus wrote motus . . . pen-
dentibus similes librationibus and pendentium instar (Th 163.13,19). Menzzer
(p- 136) rendered the former expression by: “Pendelschwingungen Zhnliche
Bewegungen” (motions like the swinging of a pendulum); and the latter by:
“den Pendeln ihnlich” (like a pendulum). Accepting Menzzer’s interpretation,
Dreyer stated that the librations were so named because they are “like the motion
of a pendulum” (Plawetary Systems, p. 330).

Are we justified in attributing the penduvlum to Copernicus? I think not. In
the sentence under discussion Rheticus’s languvage is ad similitudinem pendentium
in aere, “it resembles the motion of objecws hanging in the air.”’ ‘This formulation
is modeled after a phrase used by Copernicus in a wholly different context,
tn aore pendentibus (Th 22.14). Here Menzzer (p. 21) translated by: “in der
Luft Schwebende” (objects suspended in the air). We may safely conclude that
Copernicus is not referring to the pendulum, but in general to the kind of motion
which is quickest in the middle and slowest at the ends {cf. p. 118, above).

E. Wiedemann corrected a false attribution of the pendulum to the Arabs
(Verhandlungen der deutschen physikalischen Gesellschaft, XX1[1919], 663-64
and Zeitschrift fiir Physik, X{1922], 267-68) ; his strictures were overlooked by
Edmund Hoppe, Geschichte der Physik (Braunschweig, 1926), p. 25.



motion along the diameter; for if you imagine a circle with
diameter 2 4 and center 4, the position on the diameter 2 b, to
which the point % 1s brought by the aforesaid combined motion

of the small circles, 1s determined from the doctrine of chords;
162

and by this method the table of prosthaphaereses'® is con-
structed.

My teacher calls the motion of the first small circle about
d the anomaly, since the prosthaphaeresis 1s derived from this
motion.'® Thus let f, the center of the second small circle, de-
scribe an angle by starting from the point ¢'** and moving to
the left on the circumference of the first small arcle; let the
angle ¢ d f be 30°. The line 4 f g, drawn from the center 4,
will cut off, on the circumference of the circle 2 4, an arc a2 g of
the same number of degrees as the ar¢ ¢ f of the first small
circle. Since the point % of the second small circle moves from
g to the right at twice the speed of f, a straight line drawn from
the point g to the point 4 clearly subtends half of double the
arc @ g, and % 4 half of double the arc which remains when the
arc @ g 1s subtracted from a quadrant.’® Therefore & 4, that is,
the distance of %4 from & along the diameter 24, is 1,340
units, of which the radius constitutes 10,000. But if & & is di-

* ¥he varying differences between an apparent and mean motion. When the
mean motion is smaller than the apparent, the difference is added (prosthesis)
to the mean motion, in order to get the apparent motion; conversely, when the
mean motion is greater than the apparent, the difference is subtracted (aphaere-
sis}. The Latin equivalent for this Greek term is acguatio (Th 180.14-1 9)

* Reading motu (Th 492.x7) instead of mozus (PII 336.18).

¥ Copernicus’s discussion of this topic (De rev. iii.4) is accompanied by a
diagram, which Rheticus follows, save that he interchanges ¢ with 4, and g
with /4. Now the first three editions of the Narratio primsa contained no figures,
and Mistlin supplied them from De rew. To eliminate disagreement between
Copernicus’s diagrarm and Rheticus’s lettering, Mistlin adopted the simple expedi-
ent of transposing the letters in the diagram. But Prowe, following Th, resolved
to adhere faithfully to Copernicus’s figure, and therefore to alter the text of the
Narratio prima wherever necessary. In the present instance 4 was left unchanged,
although it should have been replaced by ¢ (‘Th 472.18; PII, 336.19).

* Cf. Th 16%.4-7. If we employ the notation used by Manitins in his Pzol-
emius Handbuch (1, 47 n), we should write:

gh == 32525 ag
hd = 32528 (90° — ag).

¥ Because 4 d, subtending an arc equal to 60° on the circle a 3, is 8,660 (Th

49~37): 10,000 -~ 8,660 = n,340.



vided into 60 units, @ % will be 4, and 4 & §6. Then by taking
the proportional part of 24", we shall know the position of the
point 4 on the given finite straight'®® line in this case,

Now that we understand this argument in a rough way, it
will be easy to see how the greatest obliquity of the equator
to the plane of the ecliptic varies and how the true precession
of the equinoxes becomes unequal. Since short arcs do not differ
sensibly from straight lines, let us begin by imagining that the
point & 1s placed upon the north pole of the mean equator and
that the line @ & 1s an arc of the mean solstitial colure. Lying
between the north pole of the mean equator and the nearby
pole,'” which is one of the poles that move at a uniform dis-
tance from the poles of the ecliptic, 4'™ marks the least distance
of the pole of the daily rotation, or pole of the earth, from the
aforesaid pole of the ecliptic.'” And 4, lying between the north
pole of the mean equator and the plane of the ecliptic, marks
the greatest distance of the pole of the earth from the pole of
the ecliptic. Then with the two small circles properly fitted into
place by means of the line 4 2, it may be understood what part
of the 24” of the line 4 & 1s described at the present time by the
north pole of the earth in the point 4 by reason of the combined
motion of the two small circles. Observing the law of opposi-
tion, the south pole moves by a similar device, as the shifting
universe alters the greatest obliquity.

Assume that the first small circle completes its revolution
in 3,434'" Egyptian years and that the terminus from which

" Since 2 & = 60, the radius == 30. And 1,340 ! 10,000 = 4.02 : 3o,

1 Reading rectae (Th 472.27) instead of rects (PRI, 336.30); and subséssar.

¥ The true pole of the equator.

™ Reading quare et (Th 472.36) instead of Quare b est (P, 337.7).

% In a note Prowe cites this passage as it appeared in the first edition and
declares it to be corrupt. It is, however, entirely sound, But a textual difhculty
was introduced by the 1566 edition, which gives ¢¢ instead of ad after reérrgs
(p. 206r) ; and the difficulty was aggravated by Th, which keeps & and inserts
a after dictum (472.36-37).

1 Reading I1IMCCCCXXXI111] (Th 473.4) instead of XXXI11IMCCCCXXX.
111 (P11, 337.17). From two other passages in the Narrazie prima (PII, 3ez,
5-6, 339.5-7), Prowe should have seen that the number he gives here is incorrect
(cf. p. 117, above and p. 158, below),



the motion of anomaly begins 1s the point @ on the circumfer-
ence of the circle whose diameter 1s described by the first libra-
tion. If the poles of the earth had no libration other than this
one, and did not deviate from the mean solstitial colure, 1t will
be clear at once to anyone that only the angle of inclination of
the plane of the true equator to the plane of the ecliptic would
vary on account of this motion of the poles of the earth, de-
creasing when they move from & through & to 4 and increasing
while they complete the opposite movement from & through 4
to @; and that hence no inequality would appear in the preces-
sion of the equinoxes.

However, 1t is certainly clear from the observations that the
true equinoctial points move 70" to either side of the mean
equinoctial points in the greatest prosthaphaeresis and that the
change in the obliquity takes twice as long as this motion. My
teacher was therefore persuaded to introduce,'™ in addition to
the first, a second lesser libration, whereby the poles of the
earth deviate from the mean solstitial colure toward the sides
of the universe in such a way that the arc or straight line ¢ 4 4
of the second libration forms four right angles with the mean
solstitial colure. In the north let 2 lie to the right side of the
universe, & to the left; and in the south @ to the left, 4 to
the right. Through the points /4 of the first libration let & of the
second libration describe lines of 24" to either side of 2 dé.
Finally, let the poles of the earth be in reality fixed te the
points % of the second libration, and let them be deflected by
the second libration only 28’ to either side of the said colure,
with 2 and & taken as the outermost points. For when the poles
are at these points, the true solstitial colure makes with the
mean solstitial colure an angle not perceptibly greater than 90’.

Now the prosthaphaereses of precession must be taken in
relation to the mean vernal point. Hence my teacher’s analysis
of the second libration deals with the relation of the true vernal
point to the mean, especially since this method of examining
the prosthaphaereses is rather easy. Then the line @ 4 will be
140" long; and 1t will be so placed that i1t corresponds to the

"™ Reading ad before constituendam (Th 473.15; PIL, 338.6).



north line of the second libration, with & at the mean vernal
point, the true vernal point at 4, and the radius of either small
arcle 35°. Moreover, the terminus from which the motion
begins 1s the mean vernal point, from which the true vernal
point moves to the right toward 4. But the anomaly 1s meas-
ured from the northernmost point of the circle whose drameter
1s described by the true vernal point; and the northernmost
point 1s marked on the crcumference of the circle by the mean
equinoctial colure. And since in one cycle of the obliquity the
inequality of the precession is twice completed, the anomaly
of the second libration has a period of 1,717 Egyptian years.*"™
Therefore the anomaly of the obliquity, as taken from the
tables and doubled, equals the anomaly of the precession. The
name “simple anomaly” is given to the former, “double anom-
aly” to the latter.

But if the second libration alone were to be assumed, the
angle of inclination of the planes of the true equator and
ecliptic clearly would not vary; and this would be a serious
fault, for every inequality of the phenomcna would be observed
only 1n connection with the inequality of the precession of the
equinox.'™ However, since both librations occur together and
since, as has been said, their motions interact, the poles of the
earth describe about the poles of the mean equator the figure
of twisted rings.’™

When the poles of the earth cross the mean solstitial colure,
the true'™ colure lies in the same plane with the mean, and the
true vernal point coincides with the mean; however, unless the
poles of both equators coincide, the planes of the equators and -
of the mean and true solstitial and equinoctial colures do not'™
completely coincidde. Now, when the north pole lies between 4
of the second libration and 4, the outermost point to the right,
the south pole occupying the opposite point, the true equinox

"™ Cf. above, p. 156, n. 172,

™ Omitting vers {Th 474.5-65 PII) 339.14)-

“® That is, the figure 8 (c¢f. Th 163.30-165.75).

™ Reading verus (Th 474.9) instead of versus (P11, 339.19).

" Reading with Mistlin (1596 ed.,, p. 128; 1621 ed., p. 126) non before
ommnino (PII, 339.23).



follows the mean, and the sun comes to the mean equator be-
fore it comes to the true. But when the poles of the earth cross
over to the opposite sides of the universe, so that the north
pole lies to the left of the mean solstitial colure and the south
to the right, the true equinox precedes the mean, and the sun
meets the true equator before it meets the mean. Besides, when
the poles of the earth move from « toward 4, the tropical year
decreases, because the true equinox advances, as it were, to meet
the sun; but when the poles move from & toward «, since the
equinox, as it were, flees from the sun, the tropical year in-
creases. And when the poles of the earth are near 4, for a brief
span of years the increase or decrease in the year is distinctly
perceptible. Moreover, since the apparent motion of the fixed
stars 1s bound up with the length of the tropical year, in the
same way the motion in precedence of the solstitial and equi-
noctial points among the fixed stars is observed as swifter and
slower.

So far as the solar apogee is concerned,*” and the distance of
the vernal equinox from it, the conclusions which in the be-
ginning**® I drew from the observations in accordance with my
teacher’s opinion are clarified by the preceding discussion. The
motion of the apogee in the ecliptic depends on the motion of
the center of the small circle and on the uniform motion of the
center of the great circle in the circumference of the small
circle. The diameter of the great circle or ecliptic that passes
through the centers of the sun and small circle i1s the mean
apse-line of the sun; but the diameter through the centers of
the sun and great circle is the true apseline. The center of the
great circle 1s found between the sun and the point on the
ecliptic where the sun is thought to be in perigee.*® Similarly,
the center of the small circle is situated between the point of
mean perigee and the sumn.

In the time of Ptolemy the true apse-line was at one end,
the point of apparent apogee, 57°50" from the first star of

* Reading with Mistlin ad instead of the first ab (1621 ed., p. 1273 PII,
340.13).
" Pages r19.26. * The point of apparent perigee.



Aries; and at the other end, the perigee, 237°50"."** But for
the mean apse-line this distance was 60°16’, and in the opposite
point, 240°16°. For, starting from that point on the small circle
which is at the greatest distance from the center of the sun, the
center of the great circle had moved about 21%° in precedence;
and the simple anomaly, that 1s, the anomaly of the obliquity,
had at that time an equal value.’® But since the center of the
small circle moves uniformly about the center of the sun, and
the center of the great circle moves uniformly on the circum-
ference of the small circle, the higher apse of the sun, at the
time of the observation made by my teacher, was found to be
69°25" from the first star of Aries.® Because at that time the
simple anomaly was almost exactly 165°, the prosthaphaeresis
was determined as almost exactly 2°10°,"® and the center of
the small circle fixed the point of mean perigee between the
sun and 2§1°35".'* Furthermore, the eccentricity of the great
circle, or eccentric of the sun if this term is preferred, which
Ptolemy computed as 74 of the radius of the great circle, is in
our time about %1,'® as the observations show, and as is readily
deduced if the hypotheses of my teacher are adopted and math-
ematics applied.

The manner in which the eccentriaties of the five planets
vary on account of the motion of the center of the great circle
on the small circle, as I pointed out in the reasons for revising
the hypotheses,® can be understood with no great effort. In
the investigation of the five planets two considerations are of
special importance: first, in what manner and to what extent the
center of the earth approaches to or withdraws from the centers
of the deferents of the planets; second, what relation this ap-

** For the true apogee was 64° 30" from the true equinox (see p. 123, above);
subtract 6° 40’, the true precession (see p. 116, above)

$7° 50"+ 180° = 23%° 5o’ for the perigee.
® Hence the prosthaphaeresis was about 2° 26" (Th 224.14-15): §7° 50’ +
2° 26" = 60° 16" + 180° = 240° 16'.
®Th 221.23-28.
* Th 221.28-30, 224.32-
2 69° 25" 4 2° 10’ + 180° = 2517 35 s
¥ Cf. above, p. 61, 0. 9. 3 See p. 136.



proach or withdrawal bears to the radius of the deferent of
each planet. The causes will not be far to seek.

In the case of Saturn the entire diameter of the small circle
has no perceptible ratio whatever to the radius of the deferent,
since Saturn 1s the first planet beneath the starry sphere. Hence
observations can reveal no wvariation in the eccentricity of
Saturn. As for Jupiter, its apogee is about a quadrant from the
apogee of the sun. Hence the motion of the center of the great
circle produces no observable change in the eccentricity at the
present time, even though the ratio of the diameter of the
small circle to the radius of the deferent is perceptible and
measurable. And this is the reason why in the case of Mercury
also no change is observed in the eccentricity, since its apogee
1s at a similar distance from the apogee of the sun.

Because the apogee of Mars is about 50° to the left of
the sun’s apogee, and the apogee of Venus 42° to the right, the
centers of their deferents are suitably placed to reveal the
change in the eccentricity;"*® and the diameter of the small
circle has a perceptible ratio to the deferent of each. By a
trigonometricz] analysis of the observations of these two planets,
my teacher found that the eccentricity of Mars has decreased by
a2z, of Venus by 7,'™ on account of the approach of the center
of the great circle to the sun.

Lest any of the motions attributed to the earth should seem
to be supported by insufficient evidence, our wise Maker ex-
pressly provided that they should all be observed equally
perceptibly in the apparent motions of all the planets; with so
few motions was it feasible to satisfy most of the necessary
phenomena of nature. Therefore the motion of the center of
the great circle affects not only the sun and the planets revolv-
ing about it but also the phenomena of the moon. For Ptolemy

™ CEf. Th 327.16.18.

* Prowe’s text (PII, 342.9) omits partemn hefore propier ('Th 475.35). Ac-
cording to Copernicus’s findings, the eccentricity of Mars had decreased from
15ee to 1460 (cf. above, p. 77, n. §8), a decrease of Y7 or 14s rather than
%2, as Rheticus has it. As for the eccentricity of Venus, Copernicus explicitly

repor®s a diminution of somewhat more than 34, not 35 (from 416 to 3s50; cf.
Th 369.8-11).



computed the greatest distance of the sun from the earth to be
1,210 units, of which the radius of the earth is one, and the
axis of the earth’s shadow 268; '*' and my teacher shows that in
our time the greatest distance of the sun from the earth is 1,179
units, and the axis of the cone of shadow 265.** But I have
decided to reserve the other related topics'® for a “Second
Account” to follow this one, wherein I shall examine the mo-
tions and phenomena of the sun and moon by the light of the
change 1n the hypotheses.

THE SECOND PART OF THE HYPOTHESES
The Motions of the Five Planets

When 1 reflect on this truly admirable structure of new
hypotheses wrought by my teacher, I frequently recall, most
learned Schéner, that Platonic dialogue which indicates the
qualities required in an astronomer and then adds “No nature
except an extraordinary one could ever easily formulate a
theory.”**

When I was with you last year and watched your work and
that of other learned men in the improvement of the motions
of Regiomontanus and his teacher Peurbach, 1 first began to
understand what sort of task and how great a difficulty it was
to recall this queen of mathematics, astronomy, to her palace,
as she deserved, and to restore the boundaries of her kingdom.
But trom the time that I became, by God’s will, a spectator and
witness of the labors which my teacher performs with energetic
mind and has in large measure already accomplished, I realized
that I had not dreamed of even the shadow of so great a burden
of work. And it is so great a labor that it is not any hero who
can endure it and finally complete it. Fer this reason, I suppose,

T HI, 4z25.x721.

Th 282.25-26,

 Omitting Ais (PII, 342.24; Th 476.6).

™ Epinemis 9geB; 8ewpioar here means “observe” rather than “theorize,”
as Rheticus interpreted it The authenticity of the Epinomis is disputed; for the
view that it is genuine see J. Harward, The Epinomis of Plato (®xford, 1928),
pp. 26-58 and, for the opposing view, J. Geffcken, Griechssche Lsteraturgeschichte
(Heidelberg, 1926-34), 1I, 174-76.



the ancients related that Hercules, sprung of Jupiter most
high, no longer trusting his own shoulders, replaced the
heavens upon Atlas, who, being long accustomed to the burden,
resumed it with stout heart and undiminished vigor, as he
had borne it in former days.

Moreover, divine Plato, master of wisdom as Pliny styles
him,** afhrms not indistinctly in the £ pinens#s that astronomy
was discovered under the guidance of God.'”® Others perhaps
interpret this opinion of Plato’s otherwise. But when I see that
my teacher always has before his eyes the observations of all
ages together with his own, assembled in order as in catalogues;
then when some conclusion must be drawn or contribution
made to the science and its principles, he proceeds from the
earliest observations to his own, seeking the mutual relationship
which harmonizes them all; the results thus obtained by cor-
rect inference under the guidance of Urania he then compares
with the hypotheses of Ptolemy and the ancients; and having
made a most careful examination of these hypotheses, he finds
that astronomical proof requires their rejection; he assumes
new hypotheses, not indeed without divine inspiration and the
favor of the gods; by applying mathematics, he geometrically
establishes the conclusions which can be drawn from them by
correct inference; he then harmonizes the ancient observations
and his own with the hypotheses which he has adopted; and
after performing all these operations he finally writes down
the laws of astronomy—when, I say, I behold this procedure,
I think that Plato must be understood as follows.

The mathematician who studies the motions of the stars
i1s surely like a blind man who, with only a staff to guide him,
must make a great, endless, hazardous journey that winds
through innumerable desolate places. What will be the result?
Proceeding anxiously for a while and groping his way with
his staff, he will at some time, leaning upon it, cry out in

*® Natwral History vii.30(31).110,

™ This proposition is not expressly formulated anywhere in the Epinontis,
but is derived from the argument in 98gD-990A. For the question of the authen-
ticity of the Epinomtis see n. 194, above.



despair to heaven, earth, and all the gods to aid him in his
misery. God will permit him to try his strength for a period of
years, that he may in the end learn that he cannot be rescued
from threatening danger by his staff. Then God compassion-
ately stretches forth His hand to the despairing man, and with
His hand conducts him to the desired goal.

The staff of the astronomer is mathematics or geometry, by
which he ventures at first to test the road and press on. For
in the examination from afar of those divine objects so remote
from us, of what avail is the strength of the human mind? Of
what avail®’ dim-sighted eyes? Accordingly, if God in His
kindness had not endowed the astronomer with heroic ambi-
tions and led him by the hand, as it were, along a road other-
wise inaccessible to the human intellect, the astronomer would
not be, I think, in any respect better circumstanced and more
fortunate than the blind man, save that trusting in his reason
and offering divine honors to his staff, he will one day rejoice 1n
the recall of Urania from the underworld. When, however, he
considers the matter aright, he will perceive that he 1s not more
blessed than Orpheus, who was aware that Eurydice was fol-
lowing him as he danced his way up from Orcus; but when
he reached the jaws of Avernus, she whom he dearly longed
to possess disappeared from view and descended once mere
to the infernal regions. Let us then examine, as we set out to
do, my teacher’s hypotheses for the remaining planets, to see
whether with unremitting devotion and under the guidance
of God, he has led Urania back to the upper world and restored
her to her place of honor.

With regard to the apparent motions of the sun and moon,
it 1s perhaps possible to deny what is said about the motion of
the earth, although I do not see how the explanation of pre-
cession 1s to be transferred to the sphere of the stars, But if
anyone desires to look either to the principal end of astronomy
and the order and harmony of the system of the spheres or to

"™ Reading quid (Th 477.15) instead of quam (PII, 344.24). In a note,
Prowe attributes the change from quam to quid to Mistlin; but the 1566 edition
has quid (p. 207v).



ease and elegance and a complete explanation of the causes of
the phenomena, by the assumption of no other hypotheses will
he demonstrate the apparent motions of the remaining planets
more neatly and correctly. For all these phenomena appear to
be linked most nobly together, as by a golden chain; and each
of the planets, by its position and order and every inequality of
its motion, bears witness that the earth moves and that we who
dwell upon the globe of the earth, instead of accepting its
changes of position, believe that the planets wander in all sorts
of motions of their own. And if it is possible anywhere else to
see how God has left the universe for our discussion, it surely
is eminently clear in this matter. No one can be affected, 1
think, by the argument that God permits Ptolemy and other
famous heroes to dissent on this point. For it is not the sort
of opinion which Socrates in the Gorgias®® declares to be
evil for men; and it does not cause any harm to either the
science itself or the divining art derived therefrom,

The ancients attributed to the epicycles of the three superior
planets the entire inequality of motion which they discovered
that these planets had with respect to the sun. Then they saw
that the remaining apparent mequality in these planets did not
occur simply on the theory of an eccentric. The results obtained
by calculating the motions of these planets in imitation of the
hypotheses for Venus agreed with experience and the observa-
tions. Hence they decided to assume for the second apparent
inequality a device like that which their analyses established
for Venus. As in the case of Venus, the center of the epicycle of
each planet was to move at a uniform distance from the center
of the eccentric, but at a uniform rate with respect to the center
of the equant; and this point was to be the center of uniform
motion also for the planet, as it moved on the epicycle with its
own motion, starting from the mean apogee. So long as the
ancients strove to retain the earth in the center of the universe,

*® 458A; Rheticus is quoting not the original Greek but a Latin translation,
Copernicus used the translation of Marsilio Ficino (Szrosmata Copernicana, pp.
306-7). But perniciosas in our text shows that Rheticus used Simon Grynaeus’s
revision of Ficino’s translation, for Grynaeus replaced Ficino’s malum by per-
niciosum (Basel, 1532, p. 342)-



they were compelled by the observations to affirm that, just as
Venus revolved with its own special motion on the epicycle,
but by reason of the eccentric advanced with the mean motion
of the sun, so conversely the superior planets in the epicycle
were related to the sun, but moved with special motions on the
eccentric. But in'®® the theory of Mercury, the ancients thought
that they had to accept, in addition to the devices which they
deemed adequate to save the appearances of Venus, a different
position for the equant, and revolution on a small circle for the
center from which the epicycle was equidistant. All these
arrangements were shrewdly devised, like most of the work of
antiquity, and would agree satisfactorily with the motions and
appearances if we granted that the celestial circles admit an
inequality about their centers—a relation which nature abhors
—and if we regarded the especially notable first inequality of
apparent motion as essential to the five planets, although it is
clearly acadental.

Moreover, 1n the latitudes of the planets, the ancients seem
to neglect the axiom that all the motions of the heavenly bodies
either are circular or are composed of circular motions; unless
perhaps it is proposed to explain the reflexions and declinations
of Venus and Mercury, the inclinations®® of the epicycles in
the three superior planets, and the deviations in the inferior
planets by motions in libration, as was done just above for the
earth’s motion in declination. We may admit this for the re-
flextons and declinations of Venus and Mercury, tnasmuch as
the angles of inclination of the planes of their eccentrics and
epicycles remain everywhere unchanged. But common calcula-
tion shows that the inclinations of the epicycles in the three
superior planets; and the deviations of Venus and Mercury
do not occur through librations. et me speak only of the
deviations. The proportional minutes, by which we compute
the deviations in relation to the distance of the center of the
epicycle from the nodes and apsides, have been investigated
and determined by the same method by which thc dcclinations

¥ Bmiteing iz (PII, 346.19; Th 478.21),
™ Reading declinationes (Th 478.33) instead of declinationis (P11, 347.3).



of the parts of the ecliptic are examined in the doctrine of the
first motion. Therefore, when the center of the epicycle of
Venus is 60° from any of the apsides of the eccentric, we infer
a deviation of 5’, and for Mercury 22%’. But if the deferent
were assumed to oscillate by means of librations, true science
would require for this position of the epicycle of Venus a devia-
tion not greater than 2%’ and for Mercury 117%’. For in this
position of the center of the epicycle the angle of inclination of
the plane of the eccentric to the plane of the ecliptic would be
found not greater than §” for Venus and 22%’ for Mercury, on
account of the properties of motion in libration. Perhaps for
this reason John Regiomontanus thought it advisable to caution
his readers that calculation of latitudes is concerned only with
the approximate truth.**!

Finally, as Aristotle points out at length in another connec-
tion,**® men by nature desire to know. Hence it is quite vexing
that the causes of phenomena are nowhere else so hidden and
wrapped, as it were, in Cimmerian darkness, a feeling which
Ptolemy shares with us. Concerning the hypotheses of the
ancients for the five planets 1 shall say no more for the present
than is required perhaps by an explanation of the new hy-
potheses (if I may so term them) and a comparison of them
with the ancient hypotheses. I sincerely cherish Ptolemy and
his followers equally with my teacher, since 1 have ever in
mind and memory that sacred precept of Aristotle: “We must
esteem both parties but follow the more accurate.”** And yet
somehow I feel more inclined to the hypotheses of my teacher.

* As Mistlin (1596 ed., p. 136) indicates, the reference is to the Epstome,
Book XIII, Prop. 21: “But to find the inclinations of this kind for every position
of the epicycle on the eccentric is no mean task. Hence attention was necessarily
directed toward another means whereby the latitudes for the remaining positions
of the epicycle would be readily determined approximately.”

™ Metaphysics i.t 98oaz1. Rheticus is quoting, not the original Greek, but
somé Latin translation which is neither the amtigua #rasmslatio nor Bessarion’s;
cf. above, p. 142, 0. 133.

¥ Metaphysics xi.8 1073b16.17 (W. D. Ross’s translation). The precept per-
haps came to the attention of Rheticus because it was quoted in Simplicius’s
Commentary on Aristotle’s De caclo (ed. Heiberg, 506.2-3); cf. above, p. 143,
n. 139



This 1s so perhaps partly because I am persuaded that now at
last I have a more accurate understanding of that delightful
maxim which on account of its weightiness and truth is at-
tributed to Plato: “God ever geometrizes”;** but partly
because in my teacher’s revival of astronomy I see, as the saying
is, with both eyes and as though a fog had lifted and the sky
were now clear, the force of that wise statement of Socratesin
the Phaedrus: “1f I think any other man 1s able to see things
that can naturally be collected into one and divided into many,

him I follow after and ‘walk in his footsteps as if he were a
god.” %%

The Hypotheses for the Motions in Longitude of the
Five Planets

What has been said thus far regarding the motion of the
earth has been demonstrated by my teacher. Consequently (as
I pointed out®*®in the reasons for revising the hypotheses) the
entire inequality in the apparent motion of the planets which
seems to occur in their positions with respect to the sun®” is
caused by the annual motion of the earth on the great circle.
It likewise follows that the planets in reality have a single
inequality, which is observed in relation to the parts of the
zodiac, and i1s one of the two recognized heretofore. Hence
only those hypotheses are acceptable which can explain both
inequalities of motion. Just as my teacher chose to employ an
epicycle on an epicycle for the moon,** so, for the purpose of
demonstrating conveniently the order of the planets and the
measurement of their motion, he has selected, for the three
superior planets, epicycles on an eccentric, but for Venus and

Mercury eccentrics on an eccentric.

* This celebrated maxim is not found in the Platonic corpus. See Plutarch’s
Moralia: (Quaestiones convivales Book viii, Question z (ed. Bermardakis, IV
[Leipzig, 1852], 307.11~108.2). The first edition of this work {Venice, 1509)
was available to Rheticus; the passage cited appears on p. 88:.

8 Phaedrus 266B {H. N. Fowler’s translatios, Loeb Classical Library, 1913).

* Page 138.

* A Greek phrase borrowed from Ptolemy; cf., e.g., HII, z50.14.13,

* Cf. above, pp. 68-69, 134.



Now since we look up at the motions of the three superior
planets as from the center of the earth, but regard the revolu-
tions of the inferior planets as below us, the centers of the
deferents of the planets may properly be brought into relation
with the center of the great circle; and from this point we
may then quite correctly transfer all the motions and phenom-
ena to the center of the earth. Therefore there must be under-
stood for the five planets an eccentric, the center of which lies
outside the center of the great circle.

But to gain a better understanding of the method of estab-
lishing the new hypotheses, in short to place everything in an
increasingly clearer light, let us suppose first that the planes of
the eccentrics of the five planets are in the plane of the ecliptic,
and that the centers of the deferents and equants are related to
the center of the great circle, as with the ancients they were
related to the center of the earth. Then let us divide into four
equal parts the distances between the center of the great circle
and the points or centers of the equants. Next let us place the
center of the eccentric of each of the three superior planets at
the third dividing point, as you move upward from the center
of the great circle toward the apogee. With the remaining
fourth part as radius, let us describe an epicycle with its center
on the circumference of the eccentric, and the scheme of real
motion in longitude will become apparent for each of these
planets.””

Then, in the opinion of my teacher, as the epicycle revolves,
the planet moves in its upper arcumference in consequence,
in its lower in precedence, so that when the center of the
epicycle is in the apogee of the eccentric, the planet is found in
the perigee of the epicycle; and conversely, when the center
of the epicycle is in the perigee of the eccentric, the planet is
in the apogee of the epicycle. By this similarity of motions, the
planet completes its periods on the epicycle in equal time with
the center of the epicycle on the eccentric. If the equants are
removed, the inequality in the motion of the superior planets
with respect to the center of the great circle is clearly regular

¥ Cf. above, p. 74, 0. 5o0.



and composed of uniform motions. For the epicycle assumed in
this theory succeeds te the function of the equant; and the
eccentric describes equal angles about its own center in equal
times, while the planet, moving on the epicycle to which it is
attached, likewise describes equal angles about the center of
the epicycle in equal times.

But the motion of Venus will be established as follows.
Rejecting the deferent, which is replaced by the great circle,
describe a small circle about the third dividing point, with the
remaming quarter of the line as radius. Then let the center
of the epicycle of Venus, which will here be called eccentric
on the eccentric, second eccentric, and movable eccentric, move
on the circumference of the said small circle®’ according to this
law, that whenever the center of the earth crosses the apse-line,
the center of the eccentric is in the point of the small circle that
is nearest to the center of the great circle; and whenever the
earth is midway on its circle between the two apsides, the center
of the eccentric of Venus is in the point of the small circle that
is most remote from the center of the great circle. The center of
the eccentric moves in the same direction as the earth, that 1s,
in the order of the signs; but, as follows from the foregoing,
it revolves twice in each period of the earth.

While the scheme of motions for Mercury agrees in general
with the theory of Venus, on account of the remaining in-
equality, there is an additional epicycle,”’ whose diameter
Mercury describes by a libration. To put the scheme in terms
of the earth’s motion, the length of the radius of the movable
deferent is 3,573,°'> the eccentricity of the first deferent 736,
the length of the radius of the small circle, which carries the
movable center of the deferent, 211, and the diameter of the
said epicycle 380 units, of which 10,000 constitute the line
from the center of the great circle to the center of the earth.
But in the motion of Mercury the following law is observed:

“> Cf, above, p. 81, n. 69.

™M Ct. above, p. 88, n. 96.

% Rheticus has chosen to give the minimum valuve (cf. Th 382.27-383.2, and
above, p. 86, n, 90).



the center of the movable eccentric, in contrast with the case
of Venus, is most remote from the center of the great circle
whenever the earth is in the line of the planet’s apsides; and
nearest, whenever the earth is at a quadrant’s distance from the
apsides of the planet. Mercury will have, as is apparent, a fixed
epicycle. The diameter of this epicycle is directed to the center
of the movable deferent and is described by a motion in libra-
tion of the planet moving along it in a straight line according
to the following law. Whenever the center of the movable
eccentric 1s most remote from the center of the great circle,
the planet is in the perigee of the epicycle, which is the lower
limit of the diameter described by the planet. Conversely,
Mercury is at the other limit, which may be called the apogee,
whenever the center of the movable eccentric is nearest to the
center of the great circle. But the motions of the apsides of the
planets, like certain other topics, are reserved for the “Second
Account.,”

The foregoing is very nearly the whole system of hypotheses
for saving the entire real inequality of the motion 1n longitude
of the planets. Therefore, if our eye were at the center of
the great circle, lines of sight drawn from it through the planets
to the sphere of the stars would, as the lines of the true
motions, be rotated in the ecliptic by the planets exactly as the
schemes of the aforementioned circles and motions require, so
that they would reveal the real inequalities of these motions in
the zodiac. But we, as dwellers upon the earth, observe the
apparent motions in the heavens from the earth. Hence we
refer all the motions and phenomena to the center of the earth
as the foundation and inmost part of our abode, by drawing
lines from it through the planets, as though our eye had moved
from the center of the great circle to the center of the earth.
Clearly it 1s from this latter point that the inequalities of all
the phenomena, as they are seen by us; must be calculated. But
if 1t 1s our purpose to deduce the true and real inequalities in
the motion of the planets, we must use the lines drawn from
the center of the great circle, as has been explained. To smooth
our way through the topics in planetary phenomena which



remain to be discussed and to make the whole treatise easier
and more agreeable, let us imagine not only the lines of true
apparent motion drawn from the center of the earth through
the planets to the ecliptic but also those drawn from the center
of the great circle and therefore properly called the lines of the
inequality of motion.

When, as the earth advances with the motion of the great
circle, it reaches a position where it is on a straight line between
the sun and one of the three superior planets, the planet will
be seen at its evening rising; and because the earth, when so
situated, is at its nearest to the planet, the ancients said that the
planet was at its nearest to the earth and in the perigee of its
epicycle. But when the sun approaches the line of the true and
apparent place of the planet—this occurs when the earth
reaches the point opposite the above-mentioned position—the
planet begins to disappear by setting in the evening and to
attain its greatest distance from the earth, until the line of the
true place of the planet passes also through the center of the
sun, Then the sun lies between the planet and the earth, and
the planet is occulted. After occultation, since the motion of
the earth continues uninterrupted and since the line of the
true place of the sun withdraws from the line of the true place
of the planet, the planet reappears at its morning rising, when
it has attained the proper distance from the sun required by
the arc of vision.

Moreover, in the hypotheses of the three superior planets,
the great circle takes the place of the epicycle attributed to
each of the planets by the ancients. Hence the true apogee and
perigee of the planet with respect to the great circle will be
found on the diameter of the great circle prolonged to meet
the planet. But the mean apogee and perigee will be found on
the diameter of the great circle that moves*?® parallel to the
line drawn from the center of the eccentric to the center of the
epicycle. Since in the semicircle closer to the planet the earth
approaches the planet, and in the other, opposite semicircle
recedes from it, in the former semicircle the ends. of the

"% Reading mowetur (Th 482.11) instead of moventur (PII, 352.11).



diameters of the great circle are the perigees, but in the latter
the apogees. For the former semicircle takes the place of the
lower part of the epicycle, but the latter, the upper.

Imagine that a conjunction of sun and planet is not far off.
Let the center of the earth be in the true place of the apogee
of the planet with respect to the great circle; and let the line of
the real inequality coincide with the line of the apparent place
of the planet. However, as the earth in its motion moves away
from this position, the line** of the real inequality and the
line of the true place of the planet begin to intersect in the
planet. The former advances with the regular unequal motion
of the planet in the order of the signs; and the latter, as it
separates from the former, makes the planet seem to us to move
more rapidly in the ecliptic than it really does with its own
motion.

But when the earth reaches the part of the great circle that
1s nearer®” to the planet, the direction of its motion at once
becomes westward, so that the apparent motion of the planet
forthwith seems slower to us. Moreover, because the earth
mounts toward the planet, the line of the true motion of the sun
moves away from the planet, and the planet is thought to
approach us, as though i1t were descending from its upper cir-
cumference. However, the motion of the planet seems to be
direct, until the center of the earth reaches the point on the
great circle with respect to the planet®'® where the angle
through which the line of the true place of the planet moves
daily in precedence equals the diurnal angle of the real in-
equality in consequence. For there, since the two motions
neutralize each other, the planet appears to remain at its first
stationary point for a number of days, depending on the ratio
of the great circle to the eccentric of the planet under considera-
tion, the position of the planet on its circle, and the real rate
of its motion. Then as the earth moves from this position
nearer to the planet, we believe that the planet retrogrades

™ Reading linea (Th 482.18) instead of lineae (PII, 352.20).
¥ Reading propiorems (Th 482.22) instead of propriorem (PII, 352.23).
¥ Reading plametamn (Th 482.27) instead of planetac (PII, 352.31).



and movesin precedence, since the regression of the line of the
true place of the planet perceptibly exceeds the real motion of
the planet. This apparent retrogradation continues until the
earth reaches the true perigee of the planet with respect to the
great circle, where the planet, at the mid-point of regression,
1s In opposition to the sun and nearest to the earth. When Mars
1s found in this position, it has, in addition to the common
retrogradation or parallax caused by the great circle, another
parallax caused by the sensible ratio of the radius of the earth
to the distance of Mars, as careful observation will testify.

Finally, as the earth moves in consequence from this central
conjunction with the planet, so to say, the westward regression
diminishes exactly as it had previously increased, until when
the motions are again equal, the planet reaches its second sta-
tionary point. Then as the real motion of the planet exceeds the
motion of the line of the true place of the planet, and as the
earth advances, the situation is reached where the planet at
length appears at the mid-point of its direct motion; and the
earth again comes to the true apogee of the planet, whence we
started its motion, and produces for us in order all the above-
mentioned phenomena of each of the planets.

The foregoing is the first use made of the great circle in the
study of the planetary motions; by it we are freed from
the three large epicycles in Saturn, Jupiter, and Mars. What the
ancients called the argument of the planet, my teacher calls
the planet’s motion in commutation,*’ for by means of it we
explain the phenomena arising from the motion of the earth
on the great circle. These phenomena are clearly caused by the
great circle, as the parallaxes of the moon are caused by
the ratio of the radius of the earth to the lunar circles. The
motion of the center of the epicycle of each planet, when sub-
tracted from the uniform motion of the earth, which is also
the mean motion of the sun, leaves as a remainder the uniform
motion of commutation; and it is computed from the mean
apogee, from which the earth also moves uniformly. Hence
the true and apparent motion of each planet in the ecliptic 1s

7 Th 308.2-8; cf. P. 48, above,



readily obtained from my teacher’s tables of the prostha-
phaereses of the planets.

Moreover, we shall find the second of the uses®® of the
great circle, no less important than the first, in the theory of
Venus and Mercury. For since we observe these two planets
from the earth as from a lookout, even if they should remain
fixed like the sun, nevertheless, because we are carried about
them by the motion of the great circle, we would think that
they, like the sun, traverse the zodiac 1n motions of their own.
Now the observations testify that Venus and Mercury move
on their crcles in independent motions of their own. Hence,
in addition to the mean motion of the sun, by which they are
carried in the order of the signs, other accidental phenomena
caused by the great circle are observed in them. For in the
first place we will consider their circles as epicycles which, as
though on their own deferents, traverse the zodiac at an equal
rate with the sun. Thus when the earth is in the perigee of
the first deferents, their entire circles will be thought to be
in the apogee of the eccentric, and conversely in the perigee
with the earth in apogee. Moreover, just as in the superior
planets the apogees and perigees with respect to the planets
are designated on the great circle, so conversely they are
marked on the circles of Venus and Mercury with respect to the
center of the earth, wherever it may be; and, by reason of the
annual motion of the earth, are drawn through all the points
on the deferents. The ends of the diameter of the movable
deferent that moves®® parallel to the line of the mean motion
of the sun, that is, the line from the center of the great circle
to the center of the earth, are the mean apsides. The apsides
in the part of the movable deferent that is more remote from
the earth are called, not without reason, the higher apsides;
those in the nearer part, the lower.

Venus revolves in nine months, as was stated above,?* and

*® Reading urilitatum (Th 483.z0) instead of wrélitatern (P, 354.24).

*® Reading movetur (1566 ed., p. 210v; 1596 ed., p. x43; 1621 ed,y p. x37)
instead of moventwr (PII, 355.19).

W page 146,



Mercury in approximately three. Hence, if*** the annual motion
of the earth should cease, each planet would appear to us on the
earth to be in each period twice in conjunction with the sun,
twice stationary, and twice at the outermost points in the
curvature®?® of the deferents, and once morning, evening, retro-
grade, direct, in apogee, and in perigee. Moreover, if our eye
were at the center of the great circle, only the independent
unequal motions of Venus and Mercury, as of the other planets,
would** appear; and as the planets traversed the entire zodiac
by their own motions, they would come to be in opposition to
the sun and would be seen in the other configurations with
respect to it.***

But since we do not observe the motions of the planets from
the center of the great circle, nor does the annual motion of
the earth cease, it will be quite clear why these phenomena
appear 1n such great variety to us who inhabit the earth. In
accordance with the size of their circles, Venus and Mercury
outrun the earth by their swifter motion, while the earth
follows them in its annual motion. Therefore Venus overtakes
the earth in about sixteen months,”® and Mercury in four;
with these intervals as their period, the planets show us again
and again all the phenomena which God desired to be seen
from the earth.

The lines of the real inequalities of motion move®*® regu-
larly, revolving about the center of the great circle in the
period allotted to them by God; but the lines of the true
places, which are drawn from the center of the earth through
Venus and Mercury, move in an altogether different manner,
not only because they are drawn from a point outside the orbits,
but also because the point is movable. We think that Venus and

* Reading §7 (Th 483.39) instead of Sic (PII, 355.22).

*2 Reading curvaturis (Th 484.33 PII, 355.26).

“ Reading offerrent (Th 484.5-6) instead of offeremt (PII, 356.3).

® Reading ewm (Th 484.7) instead of cum (Pl 356.4).

5 This estimate of the synodic period of Venus is too low. Mistlin’s correction,
nineteen months (1596 ed., p. 1433 1621 ed., p. 137), should be unhesitatingly
adopted, since it agrees with Th 310.1-7 and the tables (Th 318-19).

™ Reading sncedunt (Th 484.15) instead of incedant (PIL, 556.14),



Mercury move on their circles with the motion with which the
ancients said that they moved on the epicycle. But since this
motion 1s merely the difference by which the swifter planet
exceeds the mean motion of the earth or sun, my teacher calls
this excess the motion in commutation, for exactly the same
reasons as in the three superior planets. Consequently all the
phenomena of Venus and Mercury which would appear if the
earth were fixed recur more slowly on account of the earth’s
motion; and they occur at all the parts of the deferents and
points on the ecliptic where their motions of every sort would
be observed. For even without the earth fixed in Cancer,
Ptolemy would have found that Mercury has its least elonga-
tions from the sun in Libra, and Venus in Taurus.*** No matter
where the earth may be on the great circle, Venus and Mercury
seem to us to have their greatest elongation from the sun
when they are observed at the sides of the deferent. 1f both
tangents are drawn from the center of the earth to the deferents
of Venus and Mercury, the planets will move in the order of
the signs in the upper circumference, upper, that is, with refer-
ence to the earth; but in the opposite direction in the lower
crcumference, which 1s nearer to the earth. For here they
appear to the senses to be stationary and retrograde, since the
line of the true place of the planet makes about the center of
the earth a diurnal angle in precedence equal to the angle of
the mean motion, which is also the motion of the earth, in
consequence, or a greater angle, etc. It 1s clear from these con-
siderations why Venus and Mercury are seen to revolve about
the sun.

It 1s also clearer than sunlight that the circle which carries
the earth is rightly called the great circle. If generals have
received the surname “Great” on account of successful exploits
in war or conquests of peoples, surely this circle deserved to
have that august name applied to 1t. For almost alone i1t makes
us share in the laws of the celestial state, corrects all the errors
of the motions, and restores to its rank this most beautiful

* For Ptolemy found the apogee of Mercury in Libra, and of Venus in Taurus
(H1I, 271.2-3, 300.15-16; cf. above, p. 85, n. 87 and p. 81, n. 71).



part of philosophy. Moreover, it 1s called the great circle be-
cause it has, in comparison with the circles of both the superior
and inferior planets, a sensible magnitude which 1s the explana-
tion of the principal phenomena.

The Apparent Deviation of the Planets from the Ecliptic

In the latitudes of the planets the first point to observe is
that the name “great” 1s correctly assigned to the circle that
carries the center of the earth. This circle deserves even higher
commendation for the reason that the views of the ancients
regarding the latitudes are quite involved and obscure, as 1s
well known. The motions in longitude of the planets offer
excellent evidence that the center of the earth describes what
we call the great circle; butin the latitudes of the planets, the
uses of this crcle, as if placed in some well-lighted spot, are
more obvious, since the great circle is the principal cause of every
inequality of the appearances in latitude, even though it no-
where departs from the plane of the ecliptic. You see, most
learned Scheéner, that this circle should be honored and em-
.braced with the greatest affection; for when all the causes have
been set forth, 1t puts the whole subject of motion in latitude so
briefly and so clearly before our eyes.

First, let the deferents of the three superior planets be in-
clined to the ecliptic as in Ptolemy’s system; let their apogees
be found to the north, their perigees to the south; and let the
planets revolve on their defe-ents like the moon on its oblique
arcle, out of the plane of which it does not move, The lines
of the real inequality, the dragons®® of the planets, as they
are commonly called, indicate the inclinations of the deferents

“This term was employed to designate the deviation of the moon and the
planew from the ecliptic. The point on the ecliptic where the moon or planet
passes from south latitude to north (ascending node) was called the *“dragon’s
head,” caput Draconis (Th 261.29); the point where it passes from north lati-
tude to south {descending node) was called the “dragon’s wil,” casde Draconis
(Th 261.30). The usage survives in (e) the modern name, draconitic month,
for the average time between two successive passages of the moon through the
same node, and {#) the symbols still used to denote the nodes (for these symbols
in a MS of the fourteenth century see Paul Tannery, Mémosres scientifiques,
Toulouse and Paris, 1912— , IV, 356-57, plate 11).



to the plane of the ecliptic and its intersections with the
motions of the planets. Intersecting these lines in the centers
of the planets are the lines of the true places. The latter, ac-
cording to the position of the earth’s center®® on the great
circle in relation to the planet, and the position of the planet
on its oblique circle, mark the true places of the planets as

nearer”*® to and remoter from the line through the middle of

the signs,”' in accordance with the size of the angles which
the lines of the true places make with the plane of the ecliptic,
as mathematical theory requires. Therefore, no matter what
part of its deferent and epicycle the planet is in on the oblique
circle, when the center of the earth is in the half of the great
circle that 1s more remote from the planet—the half which
the ancients called the upper part of the epicycle—the apparent
latitudes clearly must be smaller than the angle of inclination
of the deferent to the plane of the ecliptic; for in this position
of the center of the earth in relation to the planet, the angle of
apparent latitude is smaller than the angle of inclination, being
an interior angle in comparison with the exterior and opposite.
Furthermore, when the center of the earth reaches the half of
the great circle that is nearer to the planet, conversely the ap-
parent latitude i1s seen to be greater than the angle of inclina-
tion, obviously for the same reasons; for what was previously
the exterior and opposite angle i1s now the interior angle.
This 1s the reason why the ancients thought that when the
center of the epicycle was outside the nodes, the upper part
of the epicycle was always between the planes of the deferent
and ecliptic; that the other half of the epicycle was tilted in
the same direction as the half of the deferent occupied by the
center of the epicycle; that the diameter which passed through
the middle longitudes of the epicycle moved parallel to the
plane of the ecliptic; and that when the epicycle was in

*® Reading with Mistlin (1596 ed., p. 145) cenfri instead of cemtro (PII,
358.12); cf. in tali centri terrae situ (PII, 358.22).

" Reading propiora (Th 485.27) instead of propriora (PI, 358.14).

*1 A term for the ecliptic; per signorum medium, “through the middle of the
signs,’”” is a literal translation of the standard Greek term & séver 7ov {@biwy
(ct. HI, 68.19-18).



the nodes, the planet had no latitude wherever 1t might be on
the epicycle. In our hypotheses, the planet has no latitude when
it 1s in one of the nodes, no matter where the earth may be
found on the great circle. 1f the angle between the planes of
the epicycle and deferent had been found, in the hypotheses
of the ancients, invariably equal to the angle of inclination of
the planes of the deferent and ecliptic; that is, if the plane
of the epicycle had been found always parallel to the ecliptic, the
aforementioned theory of latitudes would be sufficient. But an
inequality 1s implied in the observations geometrically exam-
ined, as can be seen in the last book of Ptolemy’s Great
Syntaxis.®>* Therefore, using a motion in libration, my teacher
makes the angle of inclination of the deferent to the ecliptic
increase and diminish in a definite relation to the mean motion
of the planet on its oblique circle, and of the earth on the great
circle. This result will be obtained if in each period of the
motion in commutation the diameter along which the libration
takes place 1s twice described by the outermost limits of the
oblique circle, and if the following condition is observed: that
when the planet is at its evening rising the angle of inclination
1s greatest, and hence the angle of apparent latitude 1s even
greater; but with the planet at its morning rising, minimal,
and hence the apparent latitude, as is consistent, even smaller.?*

But the appearances of Venus and Mercury in latitude, with
the single exception of the deviation, are more easily under-
stood than the theories of the superior planets. Let us examine
the latitudes of Venus first. Within the great circle the sphere
of Venusis the first to occur. According to my teacher, the plane
in which Venus moves is inclined to the plane of the ecliptic or
great circle along the diameter through the true apsides of the
first deferent, so that the eastern half rises northward from the
plane surface of the ecliptic by the angle of inclination which
would be contained, in Ptolemy’s hypotheses, between the
planes of the epicycle and deferent; and the western half dips
southward. By “eastern half” is to be understood the half that

HII, $37.7-542.13.
= Cf. pp. 79-80, above.



extends in consequence from the place of the higher apse, etc.
By this simple hypothesis alone we can easily derive all the
rules for the declinations and reflexions, together with their
causes, from the relation of the position of the earth to the
plane of the planet.

For when by the annual motion of the earth we reach the
place opposite the higher apse of the first deferent, where we
think that the circle of Venus is like an epicycle in the apogee
of its deferent, the plane in which Venus moves seems to us to
have a reflexion from the plane of the ecliptic, because in this
position we see the plane of Venus crosswise. And because we
look at this plane from below, the part that rises northward
will be to the left, and the other part, that dips southward, to
the right, for us whose eyes are directed southward. But as the
earth moves upward toward the higher apse of the planet,
the circle of Venus is thought to descend from the apogee of
its eccentric, and we begin to look down as from above upon
the inclined plane of the deferent of Venus. Therefore the
reflexion gradually changes into a declination, so that when the
earth is at a quadrant’s distance from its former position, no
matter where the planet may be seen in the part of its path
that tilts upward, it has only a declination from the ecliptic. In
this position, since we on the earth are opposite the half of the
deferent that extends in consequence from the higher apse
and rises northward from the plane of the ecliptic, the ancients
said that the epicycle of Venus was in the descending node and
that the apogee of the epicycle reached its greatest northern
declination, and the perigee its greatest southern.

Then, as the earth in its annual motion carries us upward
toward the place of the higher apse of Venus, its circle, like an
epicycle, seems to approach the lower apse of its deferent;
the plane of the epicycle, which is for us the plane in which
Venus moves, and which previously had a declination to the
plane of the ecliptic, again appears to have a reflexion to us;
and the northern half of the deferent, rising from the plane of
the ecliptic, lies to the right because we see Venus from above.
But when the center of the earth reaches the place of the higher



apse of Venus, no declination and only a reflexion is seen; and
the circle of Venus is believed to be in the lower apse of its
deferent, as the ancients would have said. This i1s the order of
the phenomena while the center of the earth completes half a
revolution, asit mounts in the order of the signs from the place
of the lower apse of Venus to the place of the higher apse of
Venus.

When the earth descends in the same way, the reflexion,
to our eyes, gradually changes into a declination; and because
the half of the plane of the deferent that extends in prece-
dence from the higher apse becomes, through this motton of
the earth, opposite to us, the apogee of the deferent of Venus
begins to have a southward declination from the plane of the
ecliptic, until when the earth is 9o0® from the place of the apse
both halves are seen in declination to the plane of the ecliptic
and the circle of Venus like an epicycle 1s thought to be in the
ascending node at the higher apse. As the earth moves on from
this position, the declination again changes into a reflexion; and
when the earth reaches the place of the lower apse of Venus, it
begins to produce once more the same phenomena of latitude
in Venus. From these considerations it is clear that when the
earth is on the apse-line of Venus, the plane of the deferent
of the planet appears to have a reflexion; when the earth is at
a quadrant’s distance from the apsides, a declination; and when
the earth 1s at the intervening points, mixed latitudes are
seen.?**

Mingled with these latitudes, which the ancients assigned
to the epicycle of Venus, there is still another, called “devia-
tion” by the ancients, by Ptolemy “tilting of the eccentric
circles,”®*® which they demonstrated by the center of the
deferent of the epicycle of Venus, now eliminated. Hence my
teacher has decided that another theory must be constructed
in better agreement with the observations. To make this theory
of my teacher for saving the deviation easier to understand,
like the other ideas heretofore set forth, let us define the plane

™ CL. pp. 8 3-84, above.
™ For ewample, HII, 535.6-7.



discussed above as the mean plane, and therefore fixed; from
it the true plane dewviates in a definite way, now to one side,
now to the other. We comprehend all motions with less effort
and expenditure of time by directing our attention to their
poles. We should therefore begin with the statement that one
of the poles of the mean plane lies north of the plane of the
ecliptic by the amount of the angle of inclination; the other
pole on the opposite side lies an equal distance to the south;
and what we shall prove with regard to the north pole, or the
phenomena related to it, must be understood in like manner
with regard to the south pole, the law of opposition being, of
course, observed.

Accordingly, let us assume that about the north pole of the
mean plane there is a movable circle, whose radius equals
the greatest inclinations of the mean and true planes. Let the
north pole of the true plane describe the diameter of the said
circle by a metion in libration. Furthermore, let the movable
circle follow the motion of the planet, so that as Venus proceeds
with its own motion it observes the following rule: it leaves
behind one of the two intersections that follow it, and exactly
In a year overtakes the intersection left behind. Draw a great
circle through the poles of both planes, mark off 9o° on each
side of®® its intersection with the true plane, and the nodes
or intersections, as I have called them, are determined when
the poles of the true and mean planes do not coincide. While
a periodic return of Venus to either one of the nodes is being
completed, let the pole of the true plane twice describe the
diameter of the said movable circle by a motion in libration.
Let these phenomena so occur that the planet appears to have
entered into a covenant with the center of the earth whereby,
whenever the earth is at the apsides of the deferent, no matter
where Venus is on its true deferent, it has its greatest north-
ward deviation from the mean plane, that is, it is at its greatest
distance from its mean course; moreover, when the earth is at a
quadrant’s distance from the apsides of the deferent, the planet,
together with its entire true plane, lies in the plane of the mean

™ Reading a4 (Th 488.11) instead of ad (PII, 362.18).



deferent; and when the earth passes through the intervening
points, the path of the planet likewise has intermediate devia-
tions. That this covenant of earth and planet might be ever-
lasting, God ordained that the first small circle of libration,
to use this term, should revolve once in the time 1n which one
return of Venus to either of the movable nodes occurs.

Let us make these relations clearer by an example. If at
any beginning of the motion of deviation the north pole of
the true plane 1s at its greatest southward distance from the
pole of the adjacent mean plane, and if Venus is at the limit
of its deviation, which lies to the north, the center of the earth
being in one of the apsides of Venus, in the fourth part of a
year the earth 1n its annual motion wall come to the mid-point
between the apsides, and in the same time the planet will reach
its movable intersection or node. Because the motion in libration
1s commensurable with the periodic return of the planet to its
nodes or intersections, the first small circle of libration will
likewise complete a quadrant; and the second small circle,
which moves at twice the rate of the first, will join the pole
of the true plane to the pole of the mean plane, and therefore
the two planes will coincide. But as the planet moves away
from the node, the earth proceeds toward the other apse of
the first eccentric, and the pole of the true plane moves
northward 1n libration from the pole of the mean plane. Thus
it happens that even though Venus is in south latitude, as in
our example, the latitude, if south, nevertheless diminishes, if
north, increases. When the earth reaches the other apse, the
pole of the true plane attains the northern limit of its motion
in libration; and the planet, midway between the two inter-
sections 1n its annual return to the nodes, again has its greatest
northward dewviation. It is therefore clear that the motion of the
crcle which has been assumed has this advantage, that the
revolution of Venus with respect to the nodes occurs in a year;
and that when the earth is in the apse-line, no matter where the
planet is 1n 1ts true plane, 1t always has its greatest deviation
from the mean plane; and that when the earth is midway



between the apsides, the planet 1s in the nodes. Moreover, by
reason of the motion in libration, 1t happens that when Venus i1s
in one of the nodes, the two planes coincide; and that part of
the true plane in which Venus is moving always deviates north-
ward from the mean plane, so that this latitude, as is proper,
always remains a north latitude.

The mean plane of Venus, as we have called it, is inter-
sected by the ecliptic in the apse-line of the first eccentric; and
the half of this plane that lies in consequence from the higher
apse rises northward, and the other half, by the law of oppo-
sition, dips southward. In Mercury there 1s a mean plane of a
stimilar nature. It 1s inclined to each side of the plane of the
ecliptic along the apse-line, as 1s proper, so that conversely
the half of the mean plane that lies in precedence from the
higher apse extends northward. Therefore, in the annual revo-
lution of the center of the earth the declinations and reflexions
in Mercury will be found interchanged, as compared with
those of Venus. To make this contrast more striking, God
arranged the deviation of the true plane of Mercury from the
mean plane so that the half in which Mercury i1s moving always
dewiates southward from the mean plane; and when the earth
15 at the apsides, the planet lies with its true plane in the mean
plane. Consequently Mercury has only the above-mentioned
differences in latitude from Venus, except that this deviation 1s
greater in Mercury than in Venus,” as the former has also
the greater angle of inclination.?®® The other changes of lati-
tude in Mercury will quite easily be found exactly as in Venus.

A part of the task remains, and part is done;
Here let the anchor drop and moor our boat,

to conclude this First Account with the words of the poet.*

1 'The traditional estimates were, respectively, 45" and 10’; although Coperni-
cus departed from them somewhat, he did not alter their relative value (cf.
above, p. 90, n., 1o02).

= Ct. pp. 83, 89, above.

* Ovid Ars amatoria i.771-72. Kepler also used this couplet to close Part II1
of his work on Mars (Opera, ed. Frisch, 111, 325).



Just as soon as I have read the entire work of my teacher with
sufficient application, I shall begin to fulfill the second part
of my promise. I hope that both will be more acceptable to
you, because you will see clearly that when the observations
of scholars have been set forth, the hypotheses of my teacher
agree so well with the phenomena that they can be mu-
tually interchanged, like a good definition and the thing
defined.

Most illustrious and most learned Schéner, whom 1 shall
always revere like a father, it now remains for you to receive
this work of mine, such as it 1s, kindly and favorably. For
although I am not unaware what burden my**® shoulders can
carry and what burden they refuse to carry, nevertheless your
unparalleled and, so to say, paternal aftection for me has
impelled me to enter this heaven not at all fearfully and to
report everything to you to the best of my ability. May Al-
mighty and Most Merciful God, I pray, deem my venture
worthy of turning out well, and may He enable me to conduct
the work I have undertaken along the right road to the pro-
posed goal. If I have said anything with youthful enthusiasm
(we young men are always endowed, as he says, with high,
rather than useful, spirit) or inadvertently let fall any remark
which may seem directed against venerable and sacred antiquity
more boldly than perhaps the importance and dignity of the
subject demanded, you surely, I have no doubt, will put a
kind construction upon the matter and will bear in mind my
feeling toward you rather than my fault.

Furthermore, concerning my learned teacher I should like
you to hold the opinion and be fully convinced that for him
there is nothing better or more important than walking in the
footsteps of Ptolemy and following, as Ptolemy did, the
ancients and those who were much earlier than himself. How-
ever, when he became aware that the phenomena, which control
the astronomer, and mathematics compelled him to make certain
assumptions even against his wishes, it was enough, he thought,

# Reading mei (Th 489.36) instead of me (PII, 364.30).



if he aimed his arrows by the same method to the same target
as Ptolemy, even though he employed a bow and arrows of far
different type of material from Ptolemy’s. At this point we
should recall the saying “Free in mind must he be who desires
to have understanding.”*' But my teacher especially abhors
what is alien to the mind of any honest man, particularly to a
philosophic nature; for he is far from thinking that he should
rashly depart, in a lust for novelty, from the sound opinions
of the ancient philosophers, except for good reasons and when
the facts themselves coerce him. Such is his time of life, such his
seriousness of character and distinction in learning, such, in
short, his loftiness of spirit and greatness of mind that no such
thought can take hold of him, It is rather the mark of youth
or of “those who pride themselves on some trifling specula-
tion,” to use Armstotle’s words,*** or of those passionate intel-
lects that are stirred and swayed by any breeze and their own
moods, so that, as though their pilot had been washed over-
board, they snatch at anything that comes to hand and struggle
on bravely. But may truth prevail, may excellence prevail, may
the arts ever be honored, may every good worker bring to
light useful things in his own art, and may he search in such
a manner that he appears to have sought the truth. Never will
my teacher avoid the judgment of honest and learned men,

to which he plans of his own accord to submit.

¥ This sentence serves as motto for the Narratio prima (sce p. 108, above)
and also for Kepler’s Dissertatio cum nuncio sidereo (Prague, 1610; see Keplers
opera omnia, ed. Frisch, I, 485). It is quoted substantially correctly from the
Didaskalskos (C. F, Hermann’s Teubner edition of Plato, VI [Leipzig, 1892],
152). This elementary textbook of Platonic philosophy was available to Rheticus
in the Aldine editions of Tamblichus (1516) and Apuleivs (1521); in the latter
work the words quoted appear on fol. 1 zr. The Didaskalikos was formerly
attributed to Alcinous, but now it is held that its author was Albinus, who flour-

ished in Smyrna during the middle of the second century C.E., and was a teacher
of Galen (R. E. Witt, 41dinus and she History of Middle Platonism, Cambridge,

1937, pp- 104-9).

" De mundo 391a23-24; Rheticus has adapted the original to the structure
of his sentence anid has shifted the meaning of #ewpte from *spectacle” to “specu-
lstion” (cf. above, p. 162, n. 194). The De mundo is pseudo-Aristotelian (cf.
above, p. 139, n. 121).



In Praise of Prussia

In the ode*** which is said to be preserved in golden letters
in the temple of Minerva and which celebrates the Olympic
victory of the boxer Diagoras of Rhodes, Pindar says that
Diagoras’s native land is the daughter of Venus and the dearly
beloved spouse of the sun; that Jupiter, moreover, rained much
gold there, inasmuch as the Rhodians worshipped his daughter
Minerva; and that in consequence, through Minerva, the
Rhodians gained a reputation for wisdom and education, to
which they were deeply devoted.

I am not aware that anyone could apply this resounding
praise of the Rhodians to any region of our time more suitably
than to Prussia, concerning which I propose to say a few words
that perhaps you desired to hear. Doubtless the same divinities
would be found to be presiding over this region, should some
skillful astrologer make careful inquiry about the stars that
rule over this most beautiful, most fertile, and most fortunate
area. As Pindar says:**

But the tale is told in ancient story that, when Zeus and the immortals
were dividing the earth among them, the isle of Rhodes was not yet
to be seen in the open main, but was hidden in the briny depths of the
sea; and that, as the Sun-god was absent, no one put forth a lot on his
behalf, and so they left him without any allotment of land, though
the god himself was pure from blame. But when that god made men-
tion of it, Zeus was about to order a new casting of the lot, but the
Sun-god would not suffer it. For, as he said, he could see a plot of
land rising from the bottom of the foaming main, a plot that was
destined to prove rich in substance for men, and kindly for pasture.

M3 This section was omitted from the Basel edition of 1566, the Warsaw edi-
tion of 1834, and Th. It was included in the following editions: Danzig, 15403
Basel, 1541; Tiibingen, 1596; Frankfurt, 1621; and PII, 367-77. It was also
printed, in incomplete form, in Ac¢ta Borussica, 11 (Kénigsberg and Leipzig,
1731), 413-25; and completely in Hipler, Spicilegsum Copernicanwn, pp. 215~
22. It was translated into German by Franz Beckmann (ZE, I1I{1866], s-17)
and Prowe {PI? 448-63).

** Pindar, seventh Olympian ode.

M5 Ibid., 54-63; the translation is by J. E. Sandys in the Loeb Classical Library

(London, 1915).



Doubtless the sea once covered Prussia, too. What more
definite and more important®® evidence could anyone produce
than that today amber is found inland, at a very great distance
from the coast! Therefore, on the prindple that it rose from
the sea, by an act of the gods Prussia passed into the hands of
Apollo, who cherishes it now, as once he cherished Rhodes,
his spouse. Cannot the sun reach Prussia as well as Rhodes
with vertical rays? I grant that it cannot. But it makes up for
this in many other ways; and what it accomplishes in Rhodes
by its vertical rays, it performs in Prussia by lingering above
the horizon. Moreover, amber is a special gift of God, with
which He desired to adorn this region above all others, as I
think nobody will deny. Indeed, anyone who considers the
nobility of amber and its use in medicine will regard it, not
without reason, as sacred to Apollo and as a magnificent gift,
an abundance of which he presents, like a most valuable jewel,
to his spouse Prussia.

But besides the medical and prophetic arts, which Apollo
invented and first practiced, he is filled with a passion for hunt-
ing. For this reason he seems to have chosen this land before
all others. And since he long foresaw that the savage Turks
would despoil Rhodes, he transferred his abode to these parts
and migrated hither with his sister Diana, as seems not im-
probable. For no matter where you turn your eyes, if you look
at the woods, you will say that they are game preserves (“para-
dise” in Greek) and beehives stocked by Apollo; if you look
at the orchards and fields, rabbit warrens and birdhouses,
lakes, ponds, and springs, you will say that they are the holy
places of Diana and the fisheries of the gods. And Apollo
appears to have chosen Prussia before other regions, 1 say, as
his paradise. Besides stag, doe, bear, boar, and the kind of wild
beast that is commonly known elsewhere, he brought in also
urus, elk, bison, etc., species scarcely to be found in other
places, to say nothing of the numerous and quite rare types of
bird and fish.

The progeny which Apollo received from his spouse Prussia
* Reading propiusque (1596 ed., p. 153) instead of propriusque (PII, 369.13).



is as follows: Konigsberg, seat of the 1illustrious prince,
Albrecht, duke of Prussia, margrave of Brandenburg, etc.,
patron of all the learned and renowned men of our time;
Thorn, once quite famous for its market, but now for its foster-
son, my teacher; Danzig, metropolis of Prussia, eminent for
the wisdom and dignity of its Council, for the wealth and
splendor of its renascent literature; Frauenburg, residence of
a large body of learned and pious men, famous for its eloquent
and wise Bishop, the Most Reverend John Dantiscus; Marien-
burg, treasury of His Serene Majesty, the king of Poland;
Elbing, ancient settlement in Prussia, where, too, the sacred
pursuit of literature is undertaken; Kulm, famous for its litera-
ture, where the Law of Kulm had its origin.

You might say that the buildings and the fortifications are
palaces and shrines of Apollo; that the gardens, the fields, and
the entire region are the delight of Venus, so that it could be
called, not undeservedly, Rhodes. What is more, Prussia is
the daughter of Venus, as is clear if you examine either the
fertility of the soil or the beauty and charm of the whole land.

As Venus is said to have risen from the sea, so Prussia 1s
the daughter of Venus and of the sea. And therefore it is fer-
tile enough to feed Holland and Zealand with its crops and
to serve as granary for the neighboring kingdoms and also for
England and Portugal. Besides this excellent produce it exports
quantities of fish of every sort and other valuable resources,
with which it abounds. But Venus is interested in the things
that promote culture, dignity, and the good and humane life.
These could not grow and develop in this region, for the char-
acter of the country forbade it. So she saw to it that with the
aid of the sea they could be successfully imported into Prussia
from abroad.

But since these facts are so well known to you, most learned
Schéner, that there is no need for me to speak of them at
greater length; and since they are treated in other books,
wholly devoted to this subject, I refrain from further praise.
I add only this item, that by the grace of the presiding divinity
the Prussians are a numerous people and also possess an un-



usual talent for culture. Moreover, they worship Minerva with
every type of art and for this reason receive the kindness of
Jupiter. For, not to speak of the lesser arts attributed to Min-
erva, like architecture and its allied disciplines, the revival of
literature in the world is everywhere welcomed with keenest
interest, as befts heroes, by the illustrious duke most of all,
and also by all the dignitaries and nobles of Prussia, in whose
hands lies the direction of affairs, and by the rulers of states.
They strive to encourage and support it, both independently
and jointly. Therefore Jupiter forms a yellow cloud and rains
much gold. This means, as I interpret it, that because Jupiter
1s said to preside over kingdoms and states, when the mighty
undertake to support studies, learning, and the muses, then
God gathers the minds of his subject and neighboring kings,
princes, and peoples into a golden cloud; from it he distils
peace and all the blessings of peace, like drops of gold; minds
in love with tranquillity and public order; cities governed by
just laws; wise men; upright and devout education of children;
plous and pure spread of religion, etc.

The story is frequently told of the shipwreck of Aristippus,
which they say occurred oft the island of Rhodes. Upon being
washed ashore, he noticed certain geometrical diagrams on the
beach; exclaiming that he saw the traces of men, he bade his
companions be of good cheer. And his belief did not play him
false. For through his great learning he easily obtained for
himself and his comrades from educated and humane men the
things necessary for sustaining life.

So may the gods love me, most learned Schéner, it has not
yet happened to me that I should enter the home of any dis-
tinguished man in this region—for the Prussians are a most
hospitable people—without immediately seeing geometrical
diagrams at the very threshold or finding geometry present
in their minds. Hence nearly all of them, being men of good
will; bestow upon the students of these arts every possible
benefit and service, since true knowledge and learning are
never separated from goodness and kindness.

In particular, I am wont to marvel at the kindness of two



distinguished men toward me, since I readily recognize how
slight is my scholarly equipment, measuring myself by my
own abilities. One of them is the illustrious prelate whom I
mentioned at the outset,”*” the Most Reverend Tiedemann
Giese, bishop of Kulm. His Reverence mastered with complete
devotion the set of virtues and doctrine, required of a bishop
by Paul. He realized that it would be of no small importance
to the.glory of Christ if there existed a proper calendar of
events in the Church and a correct theory and explanation of
the motions. He did not cease urging my teacher, whose ac-
complishments and insight he had known for many years, to
take up this problem, until he persuaded him to do so.

Since my teacher was social by nature and saw that the scien-
tific world also stood in need of an improvement of the mo-
tions, he readily yielded to the entreaties of his friend, the
reverend prelate. He promised that he would draw up astro-
nomical tables with new rules and that if his work had any
value he would not keep it from the world, as was done by
John Angelus,*®* among others. But he had long been aware
that in their own right the observations in a certain way re-
quired hypotheses which would overturn the ideas concerning
the order of the motions and spheres that had hitherto been
discussed and promulgated and that were commonly accepted
and believed to be true; moreover, the required hypotheses
would contradict our senses.

He therefore decided that he should imitate the Alfonsine
Tables rather than Ptolemy and compose tables with accurate
rules but no proofs. In that way he would provoke no dispute
among philosophers; common mathematicians would have a
correct calculus of the motions; but true scholars, upon whom
Jupiter had looked with unusually favorable eyes, would easily
arrive, from the numbers set forth, at the principles and sources
from which everything was deduced. Just as heretofore learned
men had to work out the true hypothesis of the motion of the

7 Page 109,
™ For Angelus sce Gesner, Bsbliotheca unsversalis, pp. 382v—383r; and 4l-
gemeine deutsche Biographse, X, 45%.



starry sphere from the Alfonsine doctrine, so the entire system
would be crystal clear to learned men. The ordinary astron-
omer, nevertheless, would not be deprived of the use of the
tables, which he seeks and desires, apart from all theory. And
the Pythagorean principle would be observed that philosophy
must be pursued in such a way that its inner secrets are reserved
for learned men, trained in mathematics, etc.*?

Then His Reverence pointed out that such a work would
be an incomplete gift to the world, unless my teacher set forth
the*reasons for his tables and also included, in imitation of
Ptolemy, the system or theory and the foundations and proofs
upon which he relied to investigate the mean motions and
prosthaphaereses and to establish epochs as initial points in the
computation of time. The bishop further argued that such a
procedure had produced great inconvenience and many errors
in the Alfonsine Tables, since we were compelled to assume
and to approve their ideas on the principle that, as the Pythag-
oreans used to say, “The Master said so”—a principle which
has absolutely no place in mathematics.

Moreover, contended the bishop, since the required prin-
ciples and hypotheses are diametrically opposed to the hypoth-
eses of the ancients, among scholars there would be scarcely
anyone who would hereafter examine the principles of the
tables and publish them after the tables had gained recognition
as being in agreement with the truth. There was no place in
science, he asserted, for the practice frequently adopted in
kingdoms, conferences, and public affairs, where for a time
plans are kept secret until the subjects see the fruitful results
and remove from doubt the hope that they will come to ap-
prove the plans.

So far as the philosophers are concerned, he continued, those
of keener insight and greater information would carefully
study Aristotle’s extensive discussion and would note that after
convincing himself that he had established the immobility of
the earth by many proofs Aristotle finally takes refuge in the
following argument:

¢ At this point the text as printed in 4cia Borussica breaks off,



We have evidence for our view in what the mathematicians say about
astronomy. For the phenomena observed as changes take place in the
figures by which the arrangement of the stars is marked out occur as
they would on the assumption that the earth is situated at the center.?*®

Accordingly the philosophers would then decide:

If this concluding statement by Aristotle cannot be linked with his
previous discussion, we shall be compelled, unless we are to waste the
time and effort which we have invested, rather to assume the true basis
of astronomy. Moreover, we must work out appropriate solutions for
the remaining problems under discussion. By returning to the principles
with greater care and equal assiduity, we must determine whether it
has been proved that the center of the earth is also the center of the
universe. If the earth were raised to the lunar sphere, would loose
fragment of earth seek, not the center of the earth’s globe, but the
center of the universe, inasmuch as they all fall at right angles to the
surface of the earth’s globe! Again, since we see that the magnet by
its natural mowon turns north, would the motion of the daily rotation
or the circular motions attribused to the earth necessarily be violent mo-
tions! Further, can the three motions, away from the center, toward
the center, and about the center, be in fact separated? We must analyze
other views which Aristotle used as fundamental propositions with which
to refute the opinions of the T#mnaeus and the Pythagoreans.

They will ponder the foregoing questions and others of the
same kind if they desire to look to the principal end of astron-
omy and to the power and the efficacy of God and nature,

But if it is to be the intention and decision of scholars every-
where to hold fast to their own principles passionately and
insistently, His Reverence warned, my teacher should not
anticipate a fate more fortunate than that of Ptolemy, the
king of this science. Averroes, who was in other respects a
philosopher of the first rank, concluded that epicycles and ec-
centrics could not possibly exist in the realm of nature and that
Ptolemy did not know why the ancients had posited motions
of rotation. His final judgment is: “The Ptolemaic astronomy
1s nothing, so far as existence is concerned; but it is convenient

% De caelo ii.14 29732-6; the translation is from Thomas L. Heath, Greek
Astronomy (London, 1932), P. 9I.



for computing the nonexistent.”*" As for the untutored, whom
the Greeks call “those who do not know theory, music, phi-
losophy, and geometry,”*** their shouting should be ignored,
since men of good will do not undertake any labors for their
sake.

By these and many other contentions, as 1 learned from
friends familiar with the entire affair, the learned prelate won
from my teacher a promise to permit scholars and posterity to
pass judgment on his work. For this reason men of good will
and students of mathematics will be deeply grateful with me
to His Reverence, the bishop of Kulm, for presenting this
achievement to the world.

In addition, the benevolent prelate deeply loves these studies
and cultivates them earnestly. He owns a bronze armillary
sphere for observing equinoxes, like the two somewhat larger
ones which Ptolemy says were at Alexandria®*® and which
learned men from everywhere in Greece came to see. He has
also arranged that a gnomon truly worthy of a prince should be
brought to him from England. I have examined this instru-
ment with the greatest pleasure, for it was made by an excellent
workman who knew his mathematics.

The second of my patrons is the esteemed and energetic
John of Werden, burgrave of Neuenburg, etc., mayor of the
famous city of Danzig. When he heard about my studies from
certain friends, he did not disdain to greet me, undistinguished
though I am, and to invite me to meet him before I left Prussia.
When I so informed my teacher, he rejoiced for my sake and
drew such a picture of the man that I realized I was being
invited by Homer’s Achilles, as it were. For besides his distinc-
tion in the arts of war and peace, with the favor of the muses
he also cultivates music. By its sweet harmony he refreshes
and inspires his spirit to undergo and to endure the burdens

* Averroes, Commentary on Aristotle’s Metaphysics, Book xii, summa ii, caput
ivy No. 43. A Latin version of Averroes’s Commentary was printed (Padua, r471)
with the Metaphysics in Latin translation (GW, 2,419; see also 3,33%40).

“* Aulus Gellius Noctes Atticae i.9.8. It is at this point that the text as printed
in dcta Borussica is resumed.,

HI, 195.5-73 197.17-20.



of office. He 1s worthy of having been made by Almighty and
Most Merciful God a “shepherd of the people.”*** Happy
the state over which God has appointed such rulers!

In the Phaedo™ Socrates rejects the opinion of those who
called the soul a “harmony.” And he did so rightly if by
harmony they understood nothing but a mixture of the ele-
ments in the body. But if they defined the soul as a harmony
because in addition to the gods only the human mind under-
stands harmony—just as it alone knows number, wherefore
certain thinkers did not fear to call it a number—and also
because they knew that souls suffering from the deadliest
diseases are sometimes healed by musical harmonies, then their
opinion will not seem unfortunate, inasmuch as 1t is principally
the soul of a heroic man that is called a harmony. Hence we
might correctly call those states happy whose rulers have
harmonious souls, that is, philosophical natures. Surely the
Scythian had no such soul who preferred hearing a horse’s
neighing to a talented musician whom others listened to in
amazement. Would that all kings, princes, prelates, and other
dignitaries of the realms had souls chosen from the vessel of
harmonious souls. Then these excellent studies and those which
are chiefly to be pursued for their own sake would doubtless
achieve a worthy station.

The foregoing, most distinguished sir, are the things which
I thought I should for the present write to you regarding the
hypotheses of my teacher, Prussia, and my patrons. Farewell,
most learned sir, and do not disdain to guide my studies with
your advice. For you know that we young men greatly need
the counsel of older and wiser men. And you have not for-
gotten that charming sentiment of the Greeks, “The opinions
of older men are better.”***

From my library at Frauenburg

September 23, 1539

8¢ A familiar epithet of kings and chiefs in Homer, e.g., liiad ii.243.

285 36B-C, 93A-95A.

35¢ This line, from a lost play of Euripedes, is preserved in Stobaeus, Florilegium
CXV.2.



A BRIEF COMMENTARY ON THE HYPOTHESES FOR THE
MOTIONS OF THE HEAVENLY BBBIES

OUR ANCESTORS assumed, I observe, a large number of

celestial spheres for this reason especially, to explain the
apparent motion of the planets by the principle of regular-
ity. For they thought it altogether absurd that a heavenly
body that 1s a perfect sphere, should not always move
uniformly.” They saw that by connecting and combining
regular motions in various ways they could make any body
appear to move to any position.

Callippus and Eudoxus, who endeavored to solve the prob-
lem by the use of concentric spheres, were unable to account
for all the planetary movements; they had to explain not
merely the apparent revolutions of the planets but also the
fact that these bodies appear to us sometimes to mount higher
in the heavens, sometimes to descend; and this fact is incom-
patible with the principle of concentricity. Therefore it seemed
better to employ eccentrics and epicycles, a system which most
scholars finally accepted.

Yet the planetary theories of Ptolemy and most other as-
tronomers, although consistent with the numerical data,
seemed likewise to present no small difhculty. For these theo-
ries were not adequate unless certain equants were also con-
ceived; it then appeared that a planet moved with uniform
velocity neither on its deferent nor about the center of its
epicycle. Hence a system of this sort seemed neither sufhciently
absolute nor sufficiently pleasing to the mind.

Having become aware of these defects, I often considered
whether there could perhaps be found a more reasonable ar-
rangement of circles, from which every apparent inequality
would be derived and in which everything would move uni-

! Perhaps this sentence should be translated: For they thought it altogethes

absurd that a heavenly body should not always move with uniform velocity in a
perfect circle.



formly about its proper center, as the rule of absolute motion
requires. After I had addressed myself to this very difficult and
almost insoluble problem, the suggestion at length came to me
how it could be solved with fewer and much simpler construc-
tions than were formerly used, if some assumptions (which are
called axtoms) were granted me. They follow in this order.

A ssumptions’

1. There 1s no one center of all the celeswal circles or

spheres.

2. The center of the earth is not the center of the universe,
but only of gravity® and of the lunar sphere.

3. All the spheres revolve about the sun as their mid-point,
and therefore the sun is the center of the universe.

4. The ratio of the earth’s distance from the sun to the
height of the firmament is so much smaller than the ratio of
the earth’s radius to its distance from the sun that the distance
from the earth to the sun is imperceptible in comparison with
the height of the firmament.

5. Whatever motion appears in the firmament arises not
from any motion of the firmament, but from the earth’s motion.
The earth together with its circumjacent elements* performs
a complete rotation on its fixed poles in a daily motion, while
the firmament and highest heaven abide unchanged.

6. What appear to us as motions of the sun arise not from

*In his description of the Commesntariolus Dreyer incorrectly states the num-
ber of assumptions as six (Planetary Systems, p. 317). The source of his mistake
is probably the oversight in PI® 191, which Prowe himself calls attention to and
corrects (PIL, 187 n).

*“Now the element of earth is the heaviest; and all heavy objects are borne
to the earth, tending toward its inmost center. In accordance with their nature,
heavy objects are borne from all directions at right angles to the surface of the
earth; and since the earth is spherical, they would come together at its center,
were they not checked at its surface. For a straight line which is at right angles
to the tangential plane at the point #f sangency leads to the center” (Th 19.28-
20.3).

“ These are (g) the atmosphere and (4) the waters that lie upon the surface
of the earth, Sce p. 63, below and in De rev.: <. . . not only does the earth so
move together with the watery element that is joined with it, but also no smal}
part of the air and whatever else is related in the same way to the earth” (Th

220‘5‘1 7)~



its motion but from the motion of the earth and our sphere,
with which we revolve about the sun like any other planet.
The earth has, then, more than one motion.

7. The apparent retrograde and direct motion of the planets
arises not from their motion but from the earth’s. The motion
of the earth alone, therefore, suffices to explain so many ap-
parent inequalities in the heavens.

Having set forth these assumptions, I shall endeavor briefly
to show how uniformity of the motions can be saved in a sys-
tematic way. However, I have thought it well, for the sake
of brevity, to omit from this sketch mathematical demonstra-
tions, reserving these for my larger work.® But in the explana-
tion of the circles I shall set down here the lengths of the
radii; and from these the reader who i1s not unacquainted with
mathematics will readily perceive how closely this arrangement
of circles agrees with the numerical data and observations.

Accordingly, let no one suppose that I have gratuitously
asserted, with the Pythagoreans, the motion of the earth;
strong proof will be found in my exposition of the circles. For
the principal arguments by which the natural philosophers
attempt to establish the immobility of the earth rest for the
most part on the appearances; it 1s particularly such arguments
that collapse here, since I treat the earth’s immobility as due
to an appearance.

The Order of the Spheres

The celestial spheres are arranged in the following order.
The highest 1s the immovable sphere of the fixed stars, which
contains and gives position to all things. Beneath it is Saturn,
which Jupiter follows, then Mars.® Below Mars is the sphere
on which we revolve; then Venus; last is Mercury. The lunar
sphere revolves about the center of the earth and moves with

® From this reservation we may infer that when Copernicus wrote the Cozz-
mentariolus he had already planned De rew. or was at work upon it.

*S, V:sub eo Saturnus; hunc sequétur Martius. In S, after Sasurnus, the words
quem sequitur Iooius have been inserted above the line by a second hand. These
readings provide a clue to the relationship between S and V; see the following
note.



the earth like an epicycle. In the same order also, one planet
surpasses another in speed of revolution, according as they
trace greater or smaller circles. Thus Saturn completes its rev-
olution in thirty years, Jupiter in twelve, Mars tn two and
one-half,’ and the earth in one year; Venus in nine months,
Mercury 1n three.

* S: Sic quidem Saturnus anno 30, Jupiter 1z, Mars, tellus amtia revolutione
restituuntur; V. Sic quidem Saturnus anno trigessmo, Iuppster duodecimo, Mars,
tellus annua revolutione reststustsir. 'The number for Mars has dropped out of
both S and V, but it may be restored from a later section in the Commentariolus,
where the sidereal period of Mars iIs given as twenty-nine months (p. 74, below).
In ®e rev. Copernicue reduced the period to two years, bringing it closer to the
true value of 687 days, or one year and ten and one-half months (Th 2¢.6:
Deinde Mars, qui biennio circuit; the explanatory figure likewise has Martss
bima revolutio; confirmation from Rheticus on p. 146, below).

In his edition of V, Curtze filled the lacuna by inserting, without any support-
ing argument, [tertio] after Mars (MCV, I, 7.27). This erroneous reading was
accepted by Prowe, who unwisely dropped the square brackets (PII, 188.13).
Adolf Miiller evidently accepted Prowe’s text ubpquestioningly (ZE, XII, 36c);
hence his translation of the Commentariolus assigned the grossly inaccurate value
of three years to Mars’ sidereal period (ZE, X1I, 364). With no more warrant
L. Birkenmajer brought Copernicus into close agreement with modern astronomy;
for his translation runs: “Mars revolves in not quite two years” (Mikotaj Koper-
nik Wybér pism, p. 9). It will be observed that none of these scholars noted the
later passage in the Commentariolus from which the lacuna may be filled without
hesitation.

The omission of the number of years or months in Mars® sidereal period
furnishes a clue to the relation between S and V. Since they share this omission,
they are both derived from a copy of the Cosmmentariolus in which the error had

already appeared. Now it is most unlikely that the Conz-

mentariolus came from the hands of Copernicus with so

glaring a defect in it. Let us assume C as the text issued

by Copernicus. Between C, as the original text, and § and

X V, as later copies, there intervenes X, one or more copies

in which the omission occurred. The stemma here proposed

may be represented by an inverted Y. The foregoing

analysis is supported by the readings cited in the preceding

¥  note, where both S and V omit Jupiter from the list of

the celestial spheres, Certainly no two independent scribes,

copying from accurate texts, would both of them have omitted Jupiter and dropped

the number for Mars. A study of the other variants makes it equally unlikely
that S was copied from V, or V from S.

In the preface to his edition of S, Lindhagen reporw the opinion of paleograph-
ers that S was written in Switzerland or northern Italy during the late sixteenth
or early seventeenth century. Curtze thought that ¥V was written in the late six-
teenth century (MCV, L 2).



The Apparent Motions of the Sun

The earth has three motions. First, it revolves annually in a
great circle® about the sun in the order of the signs, always
describing equal arcs in equal times; the distance from the
center of the circle to the center of the sun is %25 of the radius
of the circle.” The radius is assumed to have a length imper-
ceptible in comparison with the height of the firmament;™
consequently the sun appears to revolve with this motion, as
if the earth lay in the center of the universe. However, this
appearance 1s caused by the motion not of the sun but of the
earth, so that, for example, when the earth is in the sign of
Capricornus, the sun is seen diametrically opposite in Cancer,
and so on. On account of the previously mentioned distance of
the sun from the center of the circle, this apparent motion of
the sun is not uniform, the maximum inequality being 2%°."

® This great circle is the orbis magnus discussed above (p. 16).

® Here Copernicus accepts Ptolemy’s view that the eccentricity was fived (HI,
233.11-16). However, Ptolemy had put the eccentricity at %24 (HIY, 236.19-21).
Hence we may say that in the Commentariolus Copernicus retains a fixed eccen-
tricity, but offers an improved determination of it. @n the other hand, in De rev.
he finds that the eccentricity is %1 (Th 211.23-23; ¢f. p. 16c, below). Conse-
quently he there abandons the idea of a fixed eccentricity (Th 209.27-210.1),
and holds that it varies between a maximum of ¥4 and a minimum of ¥2; (Th
219.31-220.6; 209,11-11, 211.18),

® See Assumption 4, zbove.

2 Let the apparent motion of the sun (or real motion of the earth) wke place
on the great circle (ordis magnus) AEP (Fig. z0). Let the motion be uniform

A

) o
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with respect to the center at C. Let the sun be at S. Let the apogee be at A, and
the perigee at P. Assume that the earth star®% from A and has reached any point E
on the circumference. Then the line of sight ES will give the observed place of
the sun, and / ASE will measure the observed motion, But / ACE will measure



The line drawn from the sun through the center of the circle
is invariably directed toward a point of the firmament about
10° west of the more brilliant of the two bright stars in the
head of Gemini;* therefore when the earth is opposite this
point, and the center of the circle lies between them, the sun is
seen at its greatest distance from the earth.'? In this circle, then,

the uniform or mean motion. Now the inequality to which Copernicus refers is
the difference between the uniform and the observed motions; and it is measured
by £ CES. It is evident that when the earth (or the observed place of the sun)
is at A or P, the inequality is zero.

If we draw BD L ACSP at S (Fig. 21), the inequality attains its maximum
at B and D (Th 207.15-208.7; ¢f. HI, 220.12-16, 221.9-2213.3). It is obvious
that the smaller the eccentricity CS is, the smaller the maximum inequality will
be. Now Ptolemy had put the maximium inequality at 2° 23’ (HI, 238.22-239.1),
corresponding to an eccentricity of ¥5¢ (CS:AC==1:24). Since in the Commentari-
olus Copernicus reduces the eccentricity to Y65, he diminishes the maximum in-
equality to 2° 10". And in De rev., where he further reduces the eccentricity to
131, the maximum inequality is 1° s1° (Th 212.514-16).

When he states in the Commentariolus that the maximum inequality, correspond-
ing to an eccentricity of ¥s, is 236° (Juobus gradibus et sextamte umius), he is
evidently writing a convenient fraction. For 35 X 100,000 = 4,000; and by his
Table of Chords, 4,000 subtends 2° 17%’ (Th 44.20-21). For the equivalence
of Copernicus’s Table of Chords with a modern table of sines sce Armimge,
Copernicus, pp. 171-73.

®With what fixed star are we to identify “the more brilliant of the two
bright stars in the head of Gemini® (stella lucida quae est 3 capite Gemelli
splendidior)? Both Gemini 1 (Castor, « Geminorum) and Gemini 2 (Pollux, 8
Geminorum) were described as being in the head of Gemini. They were usually
differentiated as western and eastern (HIL, 20.17-18, 215 92.3-4; Th 132.29-32);
thus in a later section of the Cormmentariolus, where Copernicus refers to “the
star which is described as being in the head of the eastern of the two Gemini»
(stellam quae in capite Geminorum orientalis dicitur), he is speaking of Pollux
(p. 78). But in the present passage he does not employ the customary desig-
nation, and he relies on splendidior to indicate whether he is referring to Castor
or to Pollux. Now, in the catalogues these stars were both listed as of the
the second magnitude; and it therefore seems impossible to decide the question
by appealing to a difference in brilliancy. However, Pollux is distinguished by
its color; and it is perhaps possible that Copernicus is using spleszdidior as a
color term. On this uncertain basis let us tentatively identify the star of our
text with Pollux.

¥ If the preceding note is correct, then Copernicus is here locating the solar
apogee about 10° west of Pollux. Now Ptolemy had put the iongitude of the
selar apogee at 65° 30° (HI, 237.9-11) and the longitude of Pollux at 86° 40’
(HII, 63.4); hence the apogee was 21° 10" west of Pollux. He held that the



the earth revolves together with whatever else 1s included
within the lunar sphere.

The second motion, which 1s peculiar to the earth, is the
daily rotation on the poles in the order of the signs, that is,
from west to east. On account of this rotation the entire uni-
verse appears to revolve with enormous speed. Thus does the
earth rotate together with its circumjacent waters and encircling
atmosphere.

The third is the motion in dechination. For the axis of the
daily rotation is not parallel to the axis of the great circle, but
1sinclined to 1t at an angle that intercepts a portion of a circum-

apogee was fixed in relation to the vernal equinox (HI, z32.18-233.16), that
the equinoctial and solstitial points were constant (HI, 192.12-22), and that the
fixed stars moved eastward 1° in 1e0 years (HII, 15.15-17). Had Ptolemy been
right, the apogee should have been found, at the time of Copernicus, about ggm‘ .
west of Pollux. S

Copernicus reverses Ptolemy’s explanatxon of precession; for he regardg,
fixed stars as constant (Assumption s) and attributes the precessional motio D3
the equinoctial and solstitizl points {p. 67, below). Hence, when in the present
passage he asserss that the solar apogee is fixed, he means that it is fixed in rela-
tion to the fixed stars; but i distance from the vernal equinox increases, because
the equinoctial pointe move steadily westward.

Furthermore, so long as the vernal equinox was regarded as constant, it had
servéd as the point from which celestial longitude was measored (HII, 36.16-17).
Hence if Copernicus is to utilize without error the work of the ancient astron-
omers, he must first reconstruct the entire history of precessxon In the next section
of the Commentariolus he lays down two of the main propositions. But it is evi-
dent that he has not yet completely formulated the theory which is outlined briefly
in the Letter against Werner (pp. 99-101, below) and expounded fully in De
rev. (Th 157-173; cf. pp. 111-17, below). Moreover, since celestial longi-
tude can no longer be reckoned from the vernal equinox, some fixed star must
be selected in its stead. But Copernicus has apparently not yet made a choice;
throughout the Commentariolus, when he states a celestial position, he gives it
in terms of neighboring stars, never in terms of longitude reckoned from a fixed
origin. Because he does not give us sufficient data to make the correction for
precession, we cannot say with precision what he then believed the longitude of
the solar apogee to be.

In De rev. he chooses a fixed star from which to measure longitude (Th 114.
22-33, 130.6-7); he determines the longitude of the solar apogee as g6° 40’
(Th 211.20-21, 25-26) ; and he no longer regards the doctrine of a fixed apogee
as tenable: “There now emerges the more difficult problem of the motion of the
solar apse . . . which Ptolemy thought was fixed . . » (Th 216.3-4).

“ Cf. above, p. 58, n. 4.




ference in our time about 237%°.*> Therefore, while the centre
of the earth always remains in the plane of the ecliptic, that is,

in the circumference of the great circle, the poles of the earth
rotate, both of them describing small circles about centers equi-
distant from the axis of the great circle.'® The period of this
motion is not quite a year and is nearly equal to the annual
revolution on the great circle. But the axis of the great circle
i1s invariably directed toward the points of the firmament which
are called the poles of the ecliptic. In like manner the motion
in declination, combined with the annual motion in their joint
effect upon the poles of the daily rotation, would keep these
poles constantly fixed at the same points of the heavens, if the
periods of both motions were exactly equal.'’ Now with the
long passage of time it has become clear that this inclination
of the earth to the firmament changes. Hence it is the common
opinion that the firmament has several motions in conformity
with a law not yet sufficiently understood. But the motion of

®1In De rev. Copernicus states that he and certain of his contemporaries have
found this angle (which is equal to the obliquity of the ecliptic) to be not
greater than 23° 29" (Th 76.29-77.1) ; and again that “in our times it is found
to be not greater than 23" 28%'? (Th 162.24-25), Newcomb’s determination
of the obliquity for 1900 was z3° 2%’ 8”.26; on the basis of an annual diminution
of 0”.4684, the value for x54¢ would be 23° 29’ 597 (Admerican Ephemeris and
Nautical Almanac for 1940, Washington, D. C., 1938, p. xx).

* Miller’s version is faulty. He translated: ‘“beschreiben die beiden Pole der
Erdachse bei stets gleichbleibendem Abstand kleine Kreise um die Pole der Eklip-
tik” (the two poles of the earth’s axis, always maintaining an equal distance;
describe small circles about the poles of the ecliptic; ZE, XII, 367). But Coper-
nicus says plainly enough that it is the centers of the small circles that are equi-
distant from the poles of the ecliptic: circulos utrobique parvos describentes sn
centrss ab axe orbis magni aequidistantibus; hence the poles of the earth are not,
as Miller thought, equidistant fron: the poles of the ecliptic. This blunder led
Miiller into another error, as we shall see below (p. 73, n. 45).

Y 'This obviously requires the direction of the motion in declination to be
opposite to the direction of the annual motion. The explicit statement appears in
De rev. (where the annual revolution of the earth absut the sun is termed “the
annual motion of the center” or more briefly “the motion of the center’”): “Then
there follows the third motion of the earth, the motion in declination, which 1is
also an annual revolution but which takes place in precedence, that is, in the
direction opposite to that of the motion of the center. Since the two motions are

nearly equal in period and opposite in direction. . » (Th 31.22-25; cf. p. 148,
below).



the earth can explain all these changes in a less surprising way.
I am not concerned to state what the path of the poles is. I am
aware that, in lesser matters, a magnetized iron needle always
points in the same direction. It has nevertheless seemed a better
view to ascribe the changes to a sphere, whose motion governs
the movements of the poles. This sphere must doubtless be
sublunar.

Egual Motion Skould Be Measured Not by the Equinoxes
but by the Fixed Stars

Since the equinoxes and the other cardinal points of the
universe shift considerably, whoever attempts to derive from
them the equal length of the annual revolution necessarily
falls into error.'® Different determinations of this length were
made 1n different ages on the basis of many observations. Hip-
parchus computed 1t as 365% days, and Albategnius the Chal-
dean as 365* s" 46™' that is, 13%™ or 13%"™ less than
Ptolemy.*® Hispalensis increased Albategnius’s estimate by the

® This assertion is directed against the Ptolemaic doctrine that the length of
the year must be measured by the solstices and equinoxes (HI, 192.12-22; cf. Th
309.4-9).

* In De rev, Copernicus cites Albatcgnius’s estimate more fully as 3659534 624"
(Th 193.7-8). It is to this value that he adds r336™ (= 13™36%), in order to
obtain the sum 365%% (= 365%62). Fer Albategnius’s determination see C. A,
Nallino, AI-Batténi sive Albatenii opus astronomicuym (Pubblicazioni del Reale
osservatorio di Brera in Milano, No. 40, 1899~1907), Pt. I, 4z.17, It seems clear
that Copernicus did not draw from a single source the historical statements made
in this section. But it is altogether likely that they were in large part based upen
the Epitome in Almagestum Prolesnaei (Venice, 1496), begun by George Peur-
bach and completed by Regiomontanus {for Rheticus’s use of this work, see
below, p. 117, n. 35). For the Epitomne (Bk. III, Prop. z) gave Albategnius’s
determination as 365%5246™24% or 13%5® less than 365%4.

® When Copernicus wrote the Commentariolus, he was misinformed about
the value accepted by Hipparchus and Ptolemy, for he put it at 3653 days. But
in De rew. he correctly states that they found the year less than 365% days by
Yaooth of a day, or 3659s%5s™128 {Th 191.31-192.3, 192.21-23, 237.x3-15; HI,
207.24~208.14), The Epitome (loc. cit.) cited Hipparchus’s determination as
365%49, but queted Ptolemy’s value correctly. It should be noted that a work con-
temporary with the Commentariolus states: “Hipparchus thought that the year
consisted of 365% days, Altheugh he says that it was a fraction less than the
complete quarter, he ignored the fraction, since he judged it to be imperceptible”
(Augustinus Ricius, De motu octavae sphaerae, Trino, 1513, fol. eér; Paris, 1521,

p. 40 r).



20th part of an hour, since he determined the tropical year as
365" 5" 497

* Prowe (PIL 191 n) and Miiller (ZE, XII, 368, n. 41; the reference to
De¢ rev. should be I, xiii, not III, liii) followed Curtze (MCV, I, 10 n) in
supposing that Hispalensis, i.e., from Hispalis — Seville, here means Isidore of
Seville. In Coperpicus’s view precesion attained it greatest rapidity in the tiine
of Albategnius; thereafter diminution set in: “From these computations it is
clear that in the 400 years before Ptolemy the precession of the equinoxes was
less rapid than in the period from Ptolemy to Albategnius, and that in this
same period it was more rapid than in the interval from Albategnius to our times”
(Th 162.14-17; cf. p. 113, below). Therefore the shortest length of the tropical
year fell in the time of Albategnius; and the increase noted by Hispalensis must
be asociated with a later astronomer. This chronological consideration rules out
Isidore immediately. Moreover, an examination of the astronomical portions of
his extant works (J. P. Migne, Patrologia Latina, Vols. LXXXI-LXXXIV) shows
that be gives 365 days as the length of bhoth the tropical and sidereal years,

Who, then, is Hispalensis? Jabir ibn Aflah? In 1534 Peter Apian’s Imstru-
mentuns Primi mobslis was published together with Gebri filii Afla Hispalensis
. . . Libri 1X de astronomia, A copy was given by Rheticus to Copernicus (MCV,
I, 36), and hence it did not get into his hands before 1§39 (PII, 377.11-12).
But all our evidence points to 1533 as the very latest year in which the Coms-
mentariolus could have been written. Moreover, Jabir (op. cit., pp. 38-39)
simply repeats the Hipparchus-Ptolemy estimate of the length of the tropical
year. Clearly he is not the Hispalensis to whom Copernicus refers.

In his Stromata Copernicana (Cracow, 1914), p- 3 §3, Birkenmajer correctly identified
Copernicus’ “Hispalensis” with Alfonso de Cordoba Hispalensis. The latter, who
usually called himself Alfonsus artium et medicinae doctor, corrected Abraham Zacuto’s
Almanach perpetuum exactissime nuper emendatum omnium celi motuum cum additionibus
in eo factis tenens complementum (Venice, 1502). On fol. azr a letter is addressed to
him as Alfonso hispalensi de corduba artium et medicinae doctors. His correction of
Zacuto's Almanack perpetuum was published by Peter Liechtenstéin at Venice on
July 15, 1502, while Copernicus was a student at the nearby University of Padua,
Alfonso Hispalensis’ statement concerning the length of the year occurs on fol. aiv,
where he corrects a computation of Zacuto and says: ... dtvidas per numerum
dierum anni .365. et quartam minus undecim minutis hore . . . (divide by the number
of days in a year, 3653 minus eleven minutes = 3659s%49™). This direct statement
was overlooked by Birkenmajer, who thought he found nearly the same length of
the tropical year by implication in the tables {(which, however, were due to Zacuto
and not to Alfonso Hispalensis). Birkenmajer also misread the second word in the
volume’s title, where “perpetuu3” = “perpetuum,” not “perpetuum et” (Adriano
Cappelli, Lexicon abbreviaturarum, sth ed., Milan, 1954, p. XXXII). The Almanack
perpetuum belonging te the library of the Ermland cathedral chapter (ZE, V, 375)
may or may not have been a copy of the Venice, 1502 edition. The copy of that edition
in the library of Upsala University (Pehr Fabian Aurivillius, Catalogus libror um
impressorum bibliothecae r. academiae Upsaliensis, Upsala, 1814, p. 1002) lacks the
page on which the entry Liber capit. Varm. would have appeared, had the volume



Lest these differences should seem to have arisen from er-
rors of observation, let me say that if anyone will study the
details carefully, he will find that the discrepancy has always
corresponded to the motion of the equinoxes. For when the
cardinal points moved 1° in 100 years, as they were found to
be moving in the age of Ptolemy,** the length of the year was
then what Ptolemy stated it to be. When however in the fol-
lowing centuries they moved with greater rapidity, being op-
posed to lesser motions, the year became shorter; and this
decrease corresponded to the increase in precession. For the
annual motion was completed in a shorter time on account of
the more rapid recurrence of the equinoxes. Therefore the
derivation of the equal length of the year from the fixed stars
is more accurate. ] used Spica Virginis® and found that the
year has always been 365 days, 6 hours, and about 10 minutes,**
which is also the estimate of the ancient Egyptians.® The same
method must be employed also with the other motions of the

once belonged to the library of the Ermland chapter (Birkenmajer, Stromata, p. 300}.

Since “Hispalensts” in the Commentariokss means the Almanack perpetuum of
tsoz, it follows that Copernicus wrote the Commentariolus after July 1 of that year.
If the entry . .. sexternus TAcorice asserentis Terram moveri, Solem wero quiescere

. (a manuscript of six leaves expounding the theory of an author who asserts
that the earth moves while the sun stands still} in the catalogue of his books drawn
up on May 1, 1514, by Matthew of Miechow {1457-1523}, professor at the university
of Cracow, refers to the Commentarioks, then its date of composition is narrowed
down to the dozen years between July 1, 1502 and May 1, 1514.

= HII, 15.6-16.2. *Virgo 14 (HII, 102.16; Th 136.10), a Virginis.

* Copernicus’s estimate of the length of the sidereal year is stated more exactly
in De rev. as 36596%gm40® (Th 195.29-196.2); Curtze misquotes the estimate
as 36596%8™40° (MCV, I, 10 n), and Prowe repeass the misstatement (PII, 191

n). Newcomb’s determination (1900) is 365%.25636042z = 36596PgM¢%.54

(Aw%ope,f'n‘lg&}s"ggff};’ﬁentlyIgén{rc% t)fl? ‘information from the Epitome. It stated
(loc. cit.} that the value found by the ancient Egyptians was 365%9 + ¥3e?
= 36596%1:™). The Latin translation of Albategnius, which was printed at
Nuremberg in 1537, likewise ascribed to certain ancient Egyptian and Babylonian
astronomers a year consisting of 365%9 + Yi;d = 36536811 (Nallino, 4:-
Battink, 1, 40.28-29, 204~9; cf. below, p. 117, n. 34). So far as I am aware, no
determination of the length of the year more precise than 365%9 has been dis-
covered among the papyri or other documents surviving from ancient Egypt.



planets, as is shown by their apsides, by the fixed laws of their
motion in the firmament, and by heaven itself with true testi-
mony.

The Moon

The moon seems to me to have four motions in addition to
the annual revolution which has been menmoned. For it re-
volves once a month on its deferent circle about the center of
the earth in the order of the signs.®*® The deferent carries the
epicycle which i1s commonly called the epicycle of the first
inequality or argument, but which 1 call the first or greater
epicycle.” In the upper portion of its circumference this greater
epicycle revolves in the direction opposite to that of the def-
erent,’ and its period is a little more than a month. Attached

®The los of a leaf from V creates a lacuna which begins at this point and
ends near the close of the present section. For the intervening text we must rely
on S alone.

7 The meaning of amni is not clear to me, and I have omitted it from the
translation. Miiller rendered the passage as follows: “wir nennen ihn einfach den
ersten, den Haupt- oder Jahres-Epicykel” (but which I call the first, the chief,
or annual epicycle; ZE, XII, 370). There are three objections to Miiller’s version
of anni, Tt is syntactically unsound; in Copernicus’s system the first lunar epicycle
bas no connection with the year; Copernicus regularly empleys in bis lunar theory
the terms “first epicycle” and “greater epicycle,” but never “annual epicycle” or
“epicycle of the year” (cf. Th 235.14-15, 257.7-8, 262.26, 277.22, 288.23).

* When the motion of a circle, in the upper portion of its circumference, is
in precedence, i.e., from east to west, in the lower portion it is in consequence,
from west to east; and vice versa. “Now let abc (Fig. 22) be the epicycle . . .

Ficurs 22

and let the motion of the epicycle be understood to be from ¢ to & and from & to 4,
that i5, in precedence in the upper portion and in consequence in the lower por-
tion” (Th 251.26—252.15 cf. also Th 323.26.28, 325.2x-23; PII, 349.14-16).
When the direction of a motion is stated without reference to the portion of the
circumference, it is the upper circumference that is understood.



to 1t 1s a second epicycle. The moon, finally, moving with this
second epicycle, completes two revolutions a month in the
direction opposite to that of the greater epicycle, so that when-
ever the center of the greater epicycle crosses the line drawn
from the center of the great circle through the center of the
earth (I call this line the diameter of the great circle), the
moon is nearest to the center of the greater epicycle. This
occurs at new and full moon; but contrariwise at the quadra-
tures, midway between new and full moon,* the moon is most
remote from the center of the greater epicycle. The length of
the radius™ of the greater epicycle is to the radius of the def-

Miiller was evidently unfamiliar with this usage, for he detached in supersore

quidem portione from comira motum orbis reflexus. He translated: “dabei fihrt
er auf seiner Aussenseite einen ferneren Epicykel mit sich” (as the first epicycle

revolves, it carries with it on its surface another epicycle; ZE, XII, 370). But
Rheticus explicitly states: “As the first epicycle revolves uniformly about its own

center, in its upper sircumference it carries the center of the small second epicycle
in precedence, in it lower circumference, in consequence” (p. 134, below).

* Here, too, Miiller blundered. For he translated #7 guadraturis mediantibus
sisdem by: “zur Zeit der mittleren Quadraturen” (at the time of the mean quad-
ratures; ZE, XTI, 371). This version ignores #sdem and mistakes mediare (to
halve) for medius (the technical astronomical term for “mean). But Copernicus
has not yet begun to discuss the Junar inequalities; all that he is stating here is
the elementary fact (see p. 47, above) that the quadratures are midway between
new and full moon (#sdenr).

* Although diametri, the reading of S, cannot be checked on account of the
lacuna in V, it is certainly wrong and must be changed to semsidsamezri. Compu-

tational support for this emendation is adduced in n. 32. Additional support comes
from a calculation jotted down by Copernicus in his copy of the Tables of Regio-

montanus (see Curtze in Zestschrift fir Mathematik und Physik, XIJgQSn.),
454-56). The note reads: Semidiametrus orbis lumae ad epicyclium a E;4;?;’--
I

I
cyclus a ad & —;’) (PII, 211); “Radius of deferent of moon to first epicycle

1o:1%g; first epicycle to second epicycle 19:4.”” Throughout this series of calcu-
lations Copernicus is comparing radius with radius, never diameter with radius.
While the note was properly used by Curtze to emend another false rezding
(parte for quarta) in this same sentence of S, he overlooked dsametri. Curiously
enough, in citing Curtze’s work Prowe speaks of the note as containing “values
calcuiated by Copernicus for the radii of the planetary epicycles® (PII, 193 n);
yet he too failed to notice the discrepancy. Had Miller compared his computations
(ZE, XII, 372, n. §1) for the Commentariolus with the lunar numerical ratios
in De rev., he would surely have caught the copyist’s error. It should be observed
that Rheticus compares diameter with diameter when he gives the ratio of the
lunar epicycles (p. 134, below). |



erent as 178:10;°" and to the radius of the smaller epicycle
as 4% :1.%

By reason of these arrangements the moon appears, at times
rapidly, at times slowly, to descend and ascend; and to this
first inequality the motion of the smaller epicycle adds two
irregularities.*® For it withdraws the moon from uniform mo-
tion on the circumference of the greater epicycle, the maximum

inequality being 12%° of a circumference of corresponding size
or diameter;** and it brings the center of the greater epicycle

"1 have adopted this form for the sake of clarity and compactness, What
Copernicus actually wrote may be literally translated as follows: “The length of
the radius of the greater epicycle contains a tenth part of the radius of the deferent
plus one-eighteenth of such tenth part.” This ratio may be numerically represented
by the expression Y10 + %48+ Mo : 1 or 1 8 : 10,

®Literally: “(The length of the radius of the greater epicycle} consins the
radius of the smaller epicycle five times minus one-fourth of the smaller radius.”
While Copernicus incorporated in De rev. the lunar theory sketched in this
section, he altered the numerical componens slightly (Th 258.10-11). The ratio
of first epicycle to deferent is given here as 18 : 10, which may be written
1055:10,000; in De rev. it has been changed to 10¢7:10,000, which may be
written 1340 : 10. The ratio of first epicycle to second epicycle appears there
as 1097:237, which may be written 4.63:1; it is given above as 4.75:1.

* Although the meaning of the passage is clear, the text is faulty and simply
does not parse. We might have expected ez primae quidem diversitats duplicster
variationem motus epicycli minorss ingerit (cf. Th 2g7.20-21). The dissance
from the moon to the center of the earth varies, because the moon’s orbit around
the earth is really an ellipse; and the rate of the moon’s apparent motion varies
for the same reason. Copernicus uses the term “first inequality” to denste the
variation in the moon’s distance from the center
of the earth and employs the first epicycle to
account for it. Both the term and the geometrical
device were traditional (cf. HI, 300.16-301.1).

% The inequality is measured by an arc of the
greater epicycle, or of a circle of equal dimen-
sions, Let AB be the greater epicycle with center
at C (Fig. 23). Choose any point E on the cir-
cumference; and with E as center describe the
second epicycle. Draw CM and CL tangent to
the second epicycle. When the moon is at M or

B L, the inequality attains its maximum. Now in the

Ficure 23 Commentariolus CE.EM = 4.75:1 = 100,000

21,053. Then by the Table of Chords /ECM,

which measures the maximum inequality, = 12° ¢’ (Th 45.19-20). Hence the

reading of S, ry gradus et quadraniem, is certainly wrong, and must be corrected
to r2 gradus et gquadrantemn. As in the case of the solar inequality (see above,
p- 62, n. r1), Copernicus is writing a convenient fraction.



at times nearer the moon, at times further from it, within the
limits of the radius of the smaller epicycle.® Therefore, since
the moon describes unequal circles about the center of the
greater epicycle, the first inequality varies considerably. In
conjunctions and oppositions to the sun its greatest value does

not exceed 4°§6’, but in the quadratures it increases to 6°36".*
Those who employ an eccentric circle to account for this varia-

tion®” improperly treat the motion on the eccentric as unequal,*

While the reading of S cannot be checked on account of the lacuna in V, the
proposed emendation is confirmed by a comparison with De rev. We saw above
(n. 32) that in the later work Copernicus diminished the ratio CE:EM, making
it 1097:237 = 4.63:1 = 100,000:21,604. It is obvious that since CE has been
shortened in relation to EM, /ECM must increase; by the Table of Chords,
it is 12° 28’ (Th 45.21.22, 258.32-259.4, 264.31). Hence any such value as
17%° for the maximum inequality in the Commentariolus must be rejected as a
copyist’s error.

* Reading cum for eum (PII, 1r93.11),

® The difference between the maximum in the quadratures and the maximum in
conjunctions and oppositions is 6° 36’ ~— 4° 56 = 1° 40’, According to Ptolemy,
the difference was 2° 40’ (HI, 362.1-6). In De rev. it is 2° 44’ (Th 262.23-32,
265.10-11). Hence I suggest that the figure in our text should be changed from
6° 36" to 7° 36". Again the reading of S cannot be checked on account of the
lacuna in V.

From the following table it can be seen how closely Copernicus adhered to
the Ptolemaic determination of the lunar inequalities. The second column con-
tains the maximum inequality in conjunctions and oppositions; the third column
shows the greatest additional inequality in the quadratures; and the fourth column
sums the second and third.

Ptolemy ................. R §° o 2° 40’ n° 40’
Commentariolats . .......ccco.en. 4° 6 2° 40 7° 36
De revolutionsdus ............... 4° & 2° 44’ 7° 40°

Although Ptolemy’s table for the first lunar inequality gives ¢° t’ as the maxi-
mum (HI, 337.21, 390.24), he generally uses the round number 5° in his cal-
culations (HI, 338.22—339.3, 362.1-6, 363.10-12, 364.20-22; cf. Th 257.26-29).

¥ Ptolemy is credited with having discovered the second inequality (HI, 294.
9-14, 354.18—365.20); to account for it, he represented the center of the lunar
epicycle as revolving on a circle eccentric to the earth (HI, 355.20-22; cf. Th
232.1-3). |

¥ This charge that the representation employed by Ptolemy and his successors
violates the axiom of uniform motion is amplified in De rev.: “For when they
assert that the motion of the center of the epicycle is uniform with respect to
the center of the earth, they must also admit that the motion is not uniform on the
circle which it describes, namely, the eccentric* (Th 233.11-13). Miiller was
apparently puaeled by the words practer ineptam in ipso cawrculo motus inaequali-
tatesns and omiteed them from his translation (ZE, XII, 373).



and, in addition, fall into two manifest errors. For the conse-
quence by mathematical analysis is that when the moon is in
quadrature, and at the same time in the lowest part of the
epicycle, it should appear nearly four times greater (if the
entire disk were luminous) than when new and full, unless its
magnitude increases and diminishes in no reasonable way.* So
too, because the size of the earth 1s sensible in comparison with
its distance from the moon, the lunar parallax® should increase
very greatly at the quadratures. But if anyone investigates
these matters carefully, he will find that in both respects
the quadratures differ very little from new and full moon,
and accordingly will readily admit that my explanation is the
truer.

With these three motions in longitude, then, the moon passes
through the points of its motion in latitude.*' The axes of the
epicycles are parallel to the axis of the deferent, and therefore
the moon does not move out of the plane of the deferent. But
the axis of the deferent isinclined to the axis of the great circle

® Miiller translated the last clause: “es sei denn, man behauptete thérichter-
weise ein wirkliches Wachsen und Abnehmen der Mondkugel” (unless they ab-
surdly maintained that there is a real increase and decrease in the size of the
moon; ZE, XII, 373). This version misses the point, The apparent size of the
moon (as measured by its apparent diameter) varies, because the distance of
the moon from the earth is not constant (see n. 33). The first of the “two manifest
errors” produced by the eccentric is, not that it causes the apparent size of the
moon to vary, but that it grossly exaggerates the variation (cf. Th 234.3r~
235.8).

“Miiller failed to recognize diwersitas aspectus as the technical term for
parallax (see p. sr, above). Hence he was unable to distinguish the second of
the “two manifest errors,” and his translation (ZE, XII, 373) speaks only of
the apparent variation in the size of the moon, “der scheinbare Unterschied in
der Grasse.” Consequently, in the next sentence, where Copernicus refers to both
(utrumque) disagreements with the observational data which are produced by
the eccentric (1. exaggeration of the variation in the apparent size of the moon;
2. exaggeration of the variation in the lunar parallax), Miiller does not know
how to render wfrumgue, and falls back on “Grdssenunterschied” (variation in
size). The explicit satement of Rheticus put the matter beyond all question:
“But experience has shown my teacher that the parallax and size of the moon,
at any distance from the sun, differ little or not at all from those which occur
at conjunction and opposition, so that clearly the traditional eccentric cannot be
assigned to the moon” (p. 134, below).

“Here the lacuna in V ends.



or ecliptic;** hence the moon moves out of the plane of the
ecliptic. Its inclination is determined by the size of an angle
which subtends 5° of the circumference of a circle.® The poles
of the deferent revolve at an equal distance from the axis of
the ecliptic,' in nearly the same manner as was explained
regarding declination.* But in the present case they move in
the reverse order of the signs and much more slowly, the
period of the revolution being nineteen years.*® It 1s the com-

**Miiller rendered axs magni orbis sive eclipticae by: “die Achse des grossten
Kreises der Ekliptik” (the axis of the great circle of the ecliptic; ZE, XII, 373).
This faulty translation shows that Miiller did not quite grasp the meaning of
orbis magnus, which he interpreted (ZE, XII, 365, n. 25) as meaning “great
circle” in the geometrical sense, i.e., a circle drawn on the surface of a sphere
with its center in the center of the sphere, However, Copernicus’s term for “great
circle” in the geometrical sense (see above, p. 12, 8. 26) is not orbis magnus
but cérculus maximus (Th g7-66, passim). In the present passage orbis magnus
bears its usual sense of the real annual revolution of the earth about the sun (see
p- 16, above), The ordis magnus and the ecliptic lie in the same plane and have a
common axis: “But the axis of the great circle is invariably directed toward the
points of the firmament which are called the poles of the ecliptic” (p. 64, above).

® This estimate of §° for the maximum latitude of the moon was derived
from Ptolemy (HI, 388.11—18¢.7, 391.§2; cf. Th 272.13-15, 274.8-9) and,
subject to the correction mentioned in the following note, is retzined in modern
astronomy.

‘“ T'herefore the inclination of the moon’s orbit to the ecliptic would be con-
stant. That this inclination in fact varies was discovered by Tycho Brahe; see
T'vchonis Brahe opera ommia, ed. Dreyer, II, 121-30, 413.13-21; IV, 42.27-43.22;
V], r70.1-17x.8; VII, 151.28-154.35; XI, 162-63; XII, 399-400; Dreyer’s re-
marks on p. liv of the Introduction to Vol. I; and his Tycko Brake (Edin-
burgh, 1890}, PP- 342+44.

“*See above, p. 64, n. 16. Miller missed the force of propemodum sicut,
which he translated (ZE, XII, 373) by “Ghnlich” (like) ; whereas “almost like,”
or something of the sort, is required. In the case of the moon, the poles of the
deferent revolve at an equal distance from the axis of the ecliptic, i aequidis-
lantia axis eclspticae; but in the case of the motion in declination, the poles of
the earth revolve on circles having centers equidistant from the axis of the ecliptic.

* This estimate of nineteen years for the period during which the lunar nodes
perform their regression was also derived from Ptolemy. He measured the rate
of regression by subtracting the moon’s mean motion in longitude from the mean
motion in latitude (HI, j01.18-23, 356.4-9), the difference being about 3' a
day (HI, 356.25-357.6, 358.6-11). By reference to his tables for the moon’s
motion (HI, 282-293) we can determine the period required for the completion
of the circuit as 18 years, 7 months, and 16 days. The discovery that the regres-
sion of the nodes is not uniform was made by Tycho Brahe (sce the references
cited in n. 44, above),



mon opinion that the motion takes place in a higher sphere, to
which the poles are attached as they revolve in the manner
described. Such a fabric of motions, then, does the moon seem
to have.
The Three Supersor Planets
Saturn—JIupiter—Nars

Saturn, Jupiter, and Mars have a similar system of motions,
since their deferents completely enclose the great circle and
revolve in the order of the signs about its center as their com-
mon center. Saturn’s deferent revolves in 30 years, Jupiter’s
in 12 years, and that of Mars in 29 months;* 1t i1s as though
the size of the circles delayed the revolutions. For if the radius
of the great circle is divided into 2§ units, the radius of Mars’
deferent will be 3848 units, jupiter’s 130%., and Saturn’s
230%.4? By “radius of the deferent”” I mean the distance from

the center of the deferent to the center of the first epicycle.
Each deferent has two epicycles,”” one of which carnes the

¥ See above, p. 60, 0. 7,

* Although both S and V read 30, I propose to substitute 38, for the reasons
ssated in n. 5o, below.

“S: 230 et sextantem unsus; V. 236 et sextantem unius. Prowe accepted V,
but S is to be preferred, for the reasons given in n. 50, below.

“®1In the Commentariolus Copernicus employs for the planets what we have
called the concentrobiepicyclic arrangement (sse pp. 7, 37, above), consisting
of two epicycles upon a deferent which is concentric with the great circle. In
De rev. this device is replaced, for the three superior planets, by an eccentrepicyclic
arrangement, i.c., by a single epicycle upon an eccentric deferent {Th 325.16-21);
after indicating the geometric equivalence of the two devices (Th 325.11-16,
327.6-13), Copernicus points to the variation in the eccentricity of the great
circle as the reason for his choice of the eccentrepicyclic arrangement (Th 327.13-
16). When he wrote the Commentariolus, he regarded this eccentricity as con-
stant (sce above, p. 61, n. 9),

Now if the two arrangements are to produce identical resuls, then, as Coperni-
cus points out, the radius (R) of the concentric deferent (Commentariolus) must
be equal to the radius (R) of the eccentric deferent {De rev.). Let r denote the
radius of the great circle, By a comparison of the ratio R:r, as given here, with
the values in De rev., we may discover whether in shifting from the concentro-
biepicyclic to the eccentrepicyclic arrangement Copernicus altered the relative
sizes of the deferent and great circle. In De rew., for Saturn r = 1090 (Th
341.29), for Jupiter r = 1916 (Th 353.15-16), and for Mars r = 6580 (Th
364.8-9), when in each case R = z10,000.



other, in much the same way as was explained in the case of
the moon,’* but with a different arrangement. For the first
epicycle revolves in the direction opposite to that of the defer-
ent, the periods of both being equal. The second epicycle, car-
rying the planet, revolves in the direction opposite to that of
the first with twice the velocity. The result is that whenever
the second epicycle is at its greatest or least distance from the
center of the deferent, the planet is nearest to the center of the
first epicycle; and when the second epicycle is at the mid-
points, a quadrant’s distance from the two points just men-

Rir
De revolytionibus Commentarsolus
SAtUIN . vivvrvrnenacananann 10,000:1090 = 229%:2¢ 23076125
Jupiter ... ..o, 10,000: 1916 = 130%%:2§ 130942328
Mars ......... Carcessen-es 10,000:6680 = 38:2¢ 38:25%

The table enables us to deal with a variant reading in this passage. For R in
the case of Saturn, S has z230%, while V gives 236% (Curtze’s collation [MCV,
IV, 7] inaccurately assigns to Jupiter the reading of S for Saturn). Prowe ac-
cepted the reading of V, but S is clearly preferable, as the following analysis
will show.

I have already referred (see p. 69, n. 30) to the series of notes made by
Copernicus in his copy of the Tables of Regiomontanus, Curtze correctly pointed
out that the ratios contained in these notes are identical with those adopted in
the Commentariolus (MCV, IV, 2 n); and he used the statement about the moon
to emend a false reading in our text. However, he failed to make any further
use of these entries. Now for the radius (not diameter, as MCV, I, 1zn. and
PII, 195 n. have it; cf. PII, 211) of Saturn’s deferent, they give 230% (not
230%, as PII, 195 n). Hence we are justified in preferring the reading of S to
that of V. This judgment is confirmed by the fact that Tycho Brahe’s reference
to the Commentariolus agrees with S (see his Opera ommnia, ed. Dreyer, 1I,
428.407429.2 ).

Moreover, these notes of Copernicus show that S and V agree on a false
reading for R in the case of Mars. The statement in the Tables of Regiomon-
tanus gives the radius of Mars’ deferent as approximately 38 (Martis semidi-
arnetrus orbis 38 ferej. Now a value of 30, which is the reading of both our
MSS, would make the ratio R:r for Mars 30:25 = 10,000:8333, at wide variance
from the corresponding ratio in De rev, But reference to the table will show
that the agreement between De rev. and the Commentariolus for both Saturn
and Jupiter is quite close, Hence 1 have adopted 38, the number written by
Copernicus in his Tables of Regiomontanus, in place of 30. Writing o for 8
is not an uncommon error of copyists (cf. below, p. 82, n. 74).

™ See the opening paragraph of the section on ‘“The Moon,”



tioned,*® the planet is most remote from the center of the first
epicycle. Through the combination of these motions of the
deferent and epicycles, and by reason of the equality of their
revolutions, the aforesaid withdrawals and approaches occupy
absolutely fixed places in the firmament, and everywhere ex-
hibit unchanging patterns of motion. Consequently the apsides
are invariable;®? for Saturn, near the star which is said to be on

the elbow of Sagittarius;* for Jupiter, 8° east of the star which

is called the end of the tail of Ieo;* and for Mars, 6% west
of the heart of Leo.*®

“Miiller rendered in quadraniibus autem mediantibus by: “zur Zeit der
mittleren Quadraturen” (at the time of the mean quadratures; ZE, XII, 374)-.
With regard to mediantibus, this version repeats the blunder pointed out above in
n. 29 on p. 69; and, in addition, it mistakes guadrans (quadrant, the fourth
part of a circumference) for guadratmra (quadrature; cf, above, p, 47, n. 163).

® This was Ptolemy’s view. He held that the planetary apsides were fixed in
relation to the sphere of the fixed stars, since, as measured by the equinoxes and
solstices, both the apsides and the fixed stars moved in the same direction at the
same slow rate (HII, 251.29-252.7, 252.11-18, 257.3-12, 269.3-113 cf. Th
308.20-24).

® The star is here described as guae super cubstimn esse dicitur Sagittatoris,
It is unquestionably to be identified with Sagittarius 19 in Ptolemy’s catalogue
(HIL, 114.10), for that star was described in the first printed translation of
the Syntaxss into Latin (Venice, 1515, p. 84r) as quae esi super cubitum dextrum.
In De rev. Copernicus uses instead the name In dextro cubito (Th 139.14).

® This sear is Leo 27 in Ptolemy’s catalogue and in De rev. (HII, 100.7;
Th 135.12). I Bayer name is 8 Leonis.

% This star is Leo 8 (HII, ¢8.6; Th 134.23-24). It was called Basiliscus or
Regulus, and its Bayer name is & Leonis.

Ptolemy had put the apogee of Saturn at 23° of Scorpio; of Jupiter, at 11°
of Virgo; and of Mars, at 25° 30" of Cancer (HII, 412.12-17, 380.22~381.4,
345.12-20). In his camlogue of the fixed stars these places are, respectively,
31° 50" west of Sagittarius 19, 16° 30" east of Leo 27, and 7° west of Leo 8.
From them Copernicus’s determinations differ, respectively, by 31° 50" eastward,
8° 30" westward, and ¥° eastward. Hence we may say that although in the
Commentariolus Copernicus accepted Ptolemy’s doctrine of the fixity of the plane-
sary apsides, he intended to put forward improved determinations of them,

In, De rev. the places are again altered. But now they are all east of Ptolemy’s
determinations; for Saturn’s apogee is 17° 49" west of Sagitsrius 19; Jupiter’s,
21° 10° east of Leo 27; and Mars®, 3° 50’ east of Leo 8 (Th 338.15-18, 350.15~
16, 360.%35). Hence Copernicus abandons the idea of the fixed apogee and enun-
ciates the discovery that the longitude of the planetary apogees increases: “More-
over, the position of the higher apse of [Saturn’s] eccentric has in the meantime
advanced 13° $8’ in the sphere of the fixed stars. Ptolemy believed that this posi-



The radius of the great circle was divided above into 25
units. Measured by these units, the sizes of the epicycles are
as follows. In Saturn the radius of the first epicycle consists of
19 units, 41 minutes; the radius of the second epicycle, 6 units,
34 minutes. In Jupiter the first epicycle has a radius of 10 units,
6 minutes; the second, 3 units, 22 minutes. In Mars the first
epicycle, § units, 34 minutes; the second, I unit, §1 minutes.”
Thus the radius of the first epicycle in each case 1s three times
as great as that of the second.”

The inequality which the motion of the epicycles imposes
upon the motion of the deferent is called the first inequality;
it follows, as I have said, unchanging paths everywhere in the
firmament. There is a second inequality, on account of which
the planet seems from time to time to retrograde, and often to
become stationary. This happens by reason of the motion, not
of the planet, but of the earth changing its position in the great
circle. For since the earth moves more rapidly than the planet,
the line of sight directed toward the firmament regresses, and
the earth more than neutralizes the motion of the planet. This
regression 1s most notable when the earth is nearest to the
planet, that is, when it comes between the sun and the planet
at the evening rising of the planet. On the other hand, when

tion, like the others, was fixed; but it is now clear that it moves about 1° in
100 years” (Th 339.7-115 cf. Th 351.2-5, 359-33—360.75 and Dreyer, Planctary
Systems, p. 338).

® 1 resume the comparison instituted above in n. 5o on p. 74. As Copernicus
poin% out (Th 327.7-8), the radius (E) of the first epicycle (Commentariolus)
must be equal to the eccentricity (E) of the eccentric {De rev.). Now in D¢ rev.
for Saturn E == 854 (Th 330.18), for Jupiter E = 687 (Th 343.23-28), and
for Mars E= 1460 (Th 358.28); we already have the values of r.

r:E
D¢ revoleationthus Commentoriobus
Satorn . .............. 1090: 8§54 = 2g:19P35M 2¢:19P4 1™
Jupiter ....... ... ... 1916: 687 =2¢: 8PggM 25:10P 6@
Mars ........... ... 6580:1460 = 2¢5: gP33M 25: sP34™

® Hence the radius of the second epicycle in the Commentariolus is equal to
the radius of the single epicycle in De rev., since both = 35 E (Th 325.19-20).
An exception will be noted in the case of Mars, where Copernicus reduces the
eccentricity from 1,500 (Th 3§4.29—355.2) to 1,460, but leaves the radius of
the epicycle at soo (Th 358.24-31, 360.7-11, 362.26-28).



the planet is setting in the evening or rising in the morning,
the earth makes the observed motion greater than the actual.
But when the line of sight is moving in the direction opposite
to that of the planets and at an equal rate, the planets appear
to be stationary, since the opposed motions neutralize each
other; this commonly occurs when the angle at the earth be-
tween the sun and the planet is 120°.°° In all these cases, the
lower the deferent on which the planet moves, the greater is
the inequality. Hence it 1s smaller 1n Saturn than in Jupiter,
and again greatest in Mars, in accordance with the ratio of the
radius of the great circle to the radii of the deferents. The
inequality attains its maximum for each planet when the line
of sight to the planet is tangent to the circumference of the
great circle. In this manner do these three planets move.

In latitude they have a twofold deviation. While the cir-
cumferences of the epicycles remain in a single plane with their
deferent, they are inclined to the ecliptic. This inclination is gov-
erned by the inclination of their axes, which do not revolve, as
in the case of the moon,” but are directed always toward the
same region of the heavens. Therefore the intersections of the
deferent and ecliptic (these points of intersection are called the
nodes) occupy eternal places in the firmament.®" Thus the node
where the planet begins its ascent toward the north is, for

Saturn, 872° east of the star which is described as being in the

head of the eastern of the two Gemini; ® for Jupiter, 4° west of
“Cf Pliny Natural History ii.15{12).59: “In the trine aspect, that is, at

120° from the sun, the three superior planets have their morning stations, which
are called the first stations . . . and again at 120°, approaching from the other
direction, they have their evening stations, which are called the second swations’;
cf. also ii,76(r3).69-71. It has been shown that Copernicus read carefully a copy
of the Rome, 1473 edition of Pliny’s Nazural History (L. A. Birkenmajer,
Stromata Copernicana, Cracow, 1924, Pp. 327-14) ; and also a copy of the Venice,
1487 edition (MCV, I, 40-41).

* See the closing paragraph of the section on ““The Moon.”

* Copernicus derived fromn Ptolemy the view that the nodes, like the apsides,
are fixed (HII, 530.8-11; cf. Karl Manitius, Des Claudius Ptolemius Handbuch
der Astromomie, Leipzig, 1912-13, II, 42¢). But in De rev., having discovered
the motion of the apsides, Copernicus holds that this motion is shared by the
nodes {Th 413.7-15, 415.20-25).

® Gemini 2 (HII, ¢2.4; Th 132.31-12), Pollux, 8 Geminorum; cf. above,
p- 62, n. 12.



the same star; and for Mars, 6/2° west of Vergiliae.®® When
the planet is at this point and its diametric opposite, it has no
latitude. But the greatest latitude, which occurs at a quadrant’s
distance from the nodes,* is subject to a large inequality. For
the inclined axes and circles seem to rest upon the nodes, as
though swinging from them. The inclination becomes greatest
when the earth is nearest to the planet, that is, at the evening
rising of the planet; at that time the inclination of the axis 1s,
for Saturn 235°, Jupiter 1%°, and Mars 1%°.9% On the other
hand, near the time of the evening setting and morning rising,
when the earth is at its greatest distance from the planet, the
inclination is smaller,% for Saturn and Jupiter by %.°, and for

® Taurus 3o (HII, go.2; Th 132,5-6). Authorities differ about the identifica-
tion of Taurus 30; see Christian H. F. Peters and Edward B. Knobel, Ptolensy’s
Catalogue of Stars (Carnegie Institution of Washington, Publication No. 86,
19!5), P- 115. .

*“Ptolemy had put the points of greatest northern latitude for Saturn and
Jupiter at o of Libra, and for Mars at 30° of Cancer (HII, §26.6-115 cf. Th
413.7-11). If we compare these places with his determinations of the apogees (see
above, p. 76, n. 56), we find that for Saturn the point of greatest northern
latitude is 53° west of the apogee; for Jupiter, 19° east; and for Mars, 4° 30’
east. Ptolemy states these differences of position in round numbers as s0° west,
20° east, and o’ (HII, §87.5-93 cf. Manitins, Ptolemius Handbuch, 11, 425, n.
21).

In the present passage Copernicus gives the places of the ascending nodes. By
adding 9o° to these places, we obtain the poin® of greatest northern latitude.
They turn out to be, for Saturn, 79° 40’ west of the apogee; for Jupiter, 20° 10
east; and for Mars, 0° 20’ west. In the Commentariolus, then, Copernicus not
only adheres to the Ptolemaic ideas of the fixed apogee and the fixed node, but
he also retains Ptolemy’s distance between apogee and node for Jupiter and Mars,
although increasing the distance by 30° for Saturn.

In D¢ rev., although the apogee moves, the distance between apogee and node
remains constant, since the node shares the motion of the apogee. Copernicus finds
the points of greatest northern latitude, for Saturn at 7° of Scorpio; for Jupiter
at 27° of Libra; and for Mars at 27° of Leo (Th 413.r1-r3). If we compare
these places with his determinations of the apogees (see above, p. 76, n. 56),
we find that for Saturn the point of greatest northern latitude 1s 23° 21" west
of the apogee; for Jupiter, 48° east; and for Mars, 27° 20" east.

“S: dextante; V: sextante, Prowe, followed by Miiller (ZE, XII, 377),
adopted the reading of V; but sesxtante is clearly impossible, for the following
sentence of the text seates that the inclination diminishes in the case of Mars
by 1%°.

® The inclination is greatest when the planet is in opposition, smallest when
the planet is in conjunction; and the greatest difference between maximum and



Mars by 1%°. Thus this inequality is most notable in the
greatest latitudes, and it becomes smaller as the planet ap-
proaches the node, so that it increases and decreases equally
with the latitude.

The motion of the earth in the great circle also causes the
observed latitudes to change, its nearness or distance increasing
or diminishing the angle of the observed latitude, as mathe-
matical analysis demands. This motion in libration occurs along
a straight line, but a motion of this sort can be derived from two
circles. These are concentric, and one of them, as it revolves,
carries with it the inclined poles of the other. The lower circle
revolves in the direction opposite to that of the upper, and
with twice the velocity. As it revolves, it carries with it the
poles of the circle which serves as deferent to the epicycles.
The poles of the deferent are inclined to the poles of the circle

minimum occurs at the points of greatest latitude (Th 415.9-14). The following
table compares the maximum and minimum angles of inclination as given here
with those in De rev. (Th 421.22-2§; 421.31—422.1; 422.7-8, 10-11).

Angles of
Inclination  Commentariobus De revolutionibus
Saturn .......iveeeienna. Greatest 2% 40’ 2% 44’
Least 2° 1§’ 2} 16’
Jupiter . .........0cevov .. Greatest 1° 40’ ° 42’
Least 1° 15’ ° 18’
hi BT S P S S Greatest 1° g0’ 1° g1’
Least o ro’ o° 9’

From the table we see that the main inclinations and their limiw of variation
are as follows:

Commentariolys De revolutionibus
Satura ...... Cree s vees 27 29% + 12367 2% 30" + 14’
U P E N L ce 1% 2nY + 12l 1° 30" + 12’
Mars .............. STt + g0’ 1° + sr’

In Ptolemy’s treatment of the latitudes, for the three superior planets the angle
at which the eccentric deferent was inclined to the ecliptic was conssant (HII,
529.3-9). His values were: for Saturn 2° 30, for Jupiter z° 30’, and for Mars
1° (HII, 540.13-14, 542.5-9). But the epicycle was inclined to the eccentric at
a varying angle (HIL, s29.12=~530.8). It will be observed that in Copernicus’s
theory the epicycles and deferent are coplanar; hence the angle at which the
deferent is inclined to the ecliptic cannot be fixed, but must vary (Th 413.1-3,

19’31)0



halfway® above at an angle equal to the inclination of these
poles to the poles of the highest circle.”* So much for Saturn,
Jupiter, and Mars and the spheres which enclose the earth.

Venus

There remain for consideration the motions which are in-
cluded within the great circle, that is, the motions of Venus
and Mercury. Venus has a system of circles like the system of
the superior planets,” but the arrangement of the motions is
different. The deferent revolves in nine months, as was said
above,’ and the greater epicycle also revolves in nine months.
By their composite motion the smaller epicycle is everywhere
brought back to the same path in the firmament, and the higher
apse is at the point where I said the sun reverses its course.™
The period of the smaller epicycle is not equal to that of the
deferent and greater epicycle,” but has a constant relation to

% S: mediate; V: mediale. Before S was known, Curtze emended V to #mme-
diate, which Prowe prints. But S is undoubtedly correct.

*® Since motion in a straight line would violate the principle of circularity,
Copernicus is at pains to prove that a rectilinear motion may be produced by
a combination of two circular ones. A less concise account of this geometric device,
employed in connection with the theory of precession, as well as an explanation
of the term “libration,” will be found in the Narratio prima (pp. 153-54, below;
cf. Th 165.18—169¢.22).

®In De rev. Copernicus replaces the concemtrobiepicyclic arrangement for
Venus by an eccentreccentric arrangement, i.e,, by two eccentrics {Th 368.23-29).
The larger, outer eccentric which carries the planet has for its center a point
which revolves on the smaller eccentric {Th 368.30~369.6).

“ Page 6o.

“In placing the apogee of Venus at the solar apogee Copernicus retains the
Ptolemaic idea of the fixed apse, but he offers an improved determination. For
Ptolemy had put the apogee of Venus at z5° of Taurus (HII, 300.15-16; cf.
Th 365.2e-25; 366.3-7, 17-20), and the solar apogee at §° 30" of Gemini (see
above, p. 62, n. 13). Hence for him the apogee of Venus was 10° 30’ west of
the solar apogee. Now we have already seen that in the Commentarsolus Coperni-
cus advances the solar apogee 11° 10, as measured by the fixed stars, over
Ptolemy’s determination. Hence he advances the apogee of Venus 21° 4¢, again
as measured by the fixed stars, over Ptolemy’s determination.

“*This is the difference between the arrangement of the motions, on the one
hand, for the three superior planets, and on the other hand, for Venus, In the
former case the period of the smaller epicycle is one-half the period of the
deferent and greater epicycle (see the opening paragraph of the section on “The



the motion of the great circle. For one revolution of the latter
the smaller epicycle completes two. The result is that whenever
the earth isin the diameter drawn through the apse, the planet
is nearest to the center of the greater epicycle; and it is most
remote, when the earth, being in the diameter perpendicular
to the diameter through the apse, is at a quadrant’s distance
from the positions just mentioned. The smaller epicycle of the
moon moves in very much the same way with relation to the
sun.”* The ratio of the radius of the great circle to the radius
of the deferent of Venusis 25:18;™ the greater epicycle has a
value of % of a unit, and the smaller %.

Three Superior Planets”). Miiller completely missed the distinction. His trans-
lation runs: “Die Umlaufszeit dieses kleineren Epicykels ist verschieden von der
der oben genannten Kreise; so entsteht lingst der Ekliptik eine ungleichformige
Bewegung. Vollfiihren jene einen Umlauf, so fithrt der kleinere einen doppelten
aus” (The period of this smaller epicycle is different from that of the above-
mentioned circles [i.e., deferent and greater epicycle]; thus there appearsalong
the ecliptic an unequal motion. While those circles [i.e., deferent and greater
epicycle] complete one revolution, the smaller epicycle completes two; ZE, XII,
378)- The source of Miiller’s difficulty seems to have been the unusuval expression
Minor autem epicyclus impares cum illis revolutiones habens, motui orbis magni
smpavitatem reservavst. This may be literally translated as follows: “The smaller
epicycle, having revolutions unequal with those of the deferent and greater epi-
cycle, has reserved the inequality for the motion of the great circle,”” The next
sentence in the text makes Copernicus’s meaning clear beyond dispute, The revo-
lution of the smaller epicycle takes half the time required by the motion on the
great circle.

® See the opening paragraph of the section on “The Moon.”

™S has the false reading 10, instead of 18 (Lindhagen reproduces this page
of the MS). I call attention to the copyist’s error of writing o for 8, in con-
nection with the emendation proposed in the last paragraph of n. 50 (p. 75,
above),

®To discover whether in shifting from the concentrobiepicyclic arrangement
in the Conmnentariolus to the eccentreccentric arrangement in De rev. Copernicus
altered the relative sizes of the circles, we may make the following comparisons.
The radius (R) of the concentric deferent (Commentariolus) corresponds to
the radius (R) of the outer eccentric {De rev.). Similarly, the radius (E) of
the first epicycle (Commentariolus) corresponds to the eccentricity (E) of the
outer eccentric (De rev,); and since the eccentricity varies, we ske i% mean
value. Let r denote the radius of the great circle. Now in De rev. R = 7193,
r = 10,000, and E =312 (Th 367.13-14, 368.12-22, 371.11). Then in D¢ rev.
r:R = 10,000:7193 = 25:17.98, while in the Commentariolus r'R = 25:18;
in De rev, r:E = 10,000:312 = 25:0.78, while in the Commentariolus r:E =



Venus seems at times to retrograde, particularly when it is
nearest to the earth, like the superior planets, but for the oppo-
site reason. For the regressien of the superior planets happens
because the motion of the earth is more rapid than theirs, but
with Venus, because it is slower; and because the superior
planets enclose the great circle, whereas Venus is enclosed
within it. Hence Venus 1s never in opposition to the sun, since
the earth cannot come between them, but it moves within fixed
distances on either side of the sun. These distances are deter-
mined by tangents to the circumference drawn from the center
of the earth, and never exceed 48° in our observations.”® Here
ends the treatment of Venus’ motion in longitude.

Its latitude also changes for a twofold reason. For the axis

of the deferent is inclined at an angle of 2%°," the node

whence the planet turns north being in the apse. However, the
deviation which arises from this inclination, although 1n itself
it 1s one and the same, appears twofold to us.”® For when the
earth is on the line drawn through the nodes of Venus, the
deviations on the one side are seen above, and on the opposite

25'e.75. The radius of the second epicycle =34 E, a ratio which is applied in
the Commentariolus to all the planets. In De rew. the radius of the smaller eccen-
tric, being onethird of the inean eccentricity of the outer eccentric (Th 368.18-
22), alse = 33 E. Hence the second epicycle (Commentariolus) corresponds to
the smaller eccentric (De rev,).

Despite dodrantem in the text, Miiller’s translation makes E — % (ZE, XII,
378). He was evidently confused by a misprint in Prowe’s footnote (PII, 198).
Yet in that same footnote, five lines below the misprint, the correct value of %
appears (cf, PII, z11 and MCV, I, 14-15 n).

" This value of 48° for the greatest elongation of Venus was derived from
Ptolemy (HII, s22.14), and is accepted by modern astronomy.

" Miiller wrote 2° (ZE, XII, 379). He was evidently unfamiliar with ¢ as
the abbreviation of semissis, “one-half®” (cf. Th 51.23, 167.4, 425.25). For in
his note on the matter he misinterpreted s. as the abbreviation of scrupuia, “min-
utes” (this word was not assigned to the masculine gender, as Miiller thought).
Had he consulted Curtze’s collation of § and V, his difhculty would have been
obviated. For Curtze, confronted by a variant reading (MCV, 1V, 8), showed
that 23%° is supported by De rev. (Th 424.23-24). Moreover, in Ptolemy’s treat-
ment of the latitude of Venus, there are two inclinations of the epicycle, and each
is given as 2%%° (HIL 3535.15-18, 536.8-11).

S, V: duplex non ostenditur. Miiller correctly emended to duplex nokis
ostenditur (ZE, XI1I, 379, n. 72).
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side below; these are called the reflexions.” When the earth
is at a quadrant’s distance® from the nodes, the same natural
inclinations of the deferent appear, but they are called the
declinations. In all the other positions of the earth, both lati-
tudes mingle and are combined, each in turn exceeding the
other; by their likeness and difference they are mutually in-
creased and eliminated.

The inclination of the axis is affected by a motion in libration
that swings, not on the nodes as in the case of the superior
planets;”” but on certain other movable points. These points
perform annual revolutions with reference to the planet.
Whenever the earth is opposite the apse of Venus, at that time
the amount of the libration attains its maximum for this planet,
no matter where the planet may then be on the deferent. As a
consequence, if the planet is then in the apse or diametrically
opposite to it, it will not completely lack latitude, even though
it is then in the nodes. From this point the amount of the
libration decreases, until the earth has moved through a quad-
rant of a circle from the aforesaid position, and, by reason of
the likeness of their motions, the point of maximum deviation®
has moved an equal distance from the planet. Here no trace
of the dewviation is found.* Thereafter the descent of the devia-
tion continues.’* The initial point drops from north to south,

'* An alternative name was obliquation: “They call this deviation of the planet
the obliquation, but some call it the reflexion” {Th 418.22-23), In De rev.
Copernicus generally uses obliquation, but in the Narratio prima Rheticus favors
reflexion. -

* Miiller’s translation: “in den Quadraturen” {(in the quadratures; ZE, XII,
179) again confuses quadrantibus with guadraturis (cf. above, p. 76, n. g2).
An inferior planet cannot come to quadrature (see above, p. 50); Copernicus has
just stated that the greatest elongation of Venus is 48°.

® See the penultimase paragraph of the section on “The Three Superior
Planets.” p

® Miiller correctly emended maxime (S, V) to maximae (ZE, XII, 380, n. 75).

® Since the deviation vanishes when the earth is 9go® from the apse-line of the
planet, the deviation has no effect upon the declinations, but only upon the re-
flexions. Copernicus employs the deviation “because the angle of inclination . . .
is found to be greater in the obliquation [refiexion] than in the declination”
(Th 418.27-29).

®'S, V; comtinuato. Prowe’s continuatio is a misprint (PII, 200.3).



constantly increasing its distance from the planet in accordance
with the distance of the earth from the apse. Thereby the
planet is brought to the part of the circumference which pre-
viously was south. Now, however, by the law of opposition,
it becomes north and remains so until the limit of the libration
1s again reached upon the completion of the circle. Here the
deviation becomes equal to the initial deviation and once more
attains its maximum. Thus the second semicircle is traversed in
the same way as the first. Consequently this latitude, which is
usually called the deviation, never becomes a south latitude.
In the present instance, also, it seems reasonable that these
phenomena should be produced by two concentric circles with
oblique axes, as I explained in the case of the superior planets.*

Mercury

Of all the orbits in the heavens the most remarkable is that
of Mercury, which traverses almost untraceable paths, so that
it cannot be easily studied. A further difhiculty is the fact that
the planet, followinga course generally invisible in the rays of
the sun, can be observed for a very few days only. Yet Mercury
too will be understood, if the problem is attacked with more

than ordinary ability.

Mercury, litke Venus, has two epicycles which revolve on
the deferent.®® The periods of the greater epicycle and deferent
are equal, as in the case of Venus. The apse is located 1472°
east of Spica Virginis.** The smaller epicycle revolves with
twice the velocity of the earth. But by contrast wiath Venus,
whenever the earth is above the apse or diametrically opposite

® For a fuller account of Copernicus’s theory for the latitudes of Venus sece
pp- 180-835, below,

*1In De¢ rev. Copernicus replaces the concentrobiepicyclic arrangement for Mer-
cury by an eccentreccentric arrangement (Th 377.2-3).

* Since Ptolemy had put the apogee of Mercury at 10° of Libra {HII, 264.12-
14, 271.3-4; cf. Th 380.6-7), and Spica at 26° 40" of Virgo (HII, 103.16), the
apse was 13° 20" east of Spica Virginis. Hence in the Commaentariolus Copernicus
retains the idea of the fixed apse and modifies i%s position slightly. But in Dé rev.
he puts the apse 41° 30" east of Spica (Th r36.x0, 389,5-6, 393.5-8), and extends
to Mercury the principle that the longitude of the planetary apogees increases
(Th 393.16-19, 27-293 cf. n. 56 on pp. 76-77, above).



to it, the planet is most remote from the center of the greater
epicycle; and it 1s nearest, whenever the earth is at a quadrant’s
distance® from the points just mentioned. I have said® that
the deferent of Mercury revolves in three months, that is, in
§8 days. Of the 25 units into which I have divided the radius
of the great circle, the radius of the deferent of Mercury con-
tains 9%. The first epicycle contains 1 unit, 41 minutes; the
second epicycle is % as great, that is, about 34 minutes.”
But in the present case this combination of circles is not sufh-
cient, though 1t 1s for the other planets. For when the earth
passes through the above-mentioned positions with respect to
the apse the planet appears to move in a much smaller path®
than 1s required by the system of circles described above; and
in a much greater path,” when the earth is at a quadrant’s
distance® from the positions just mentioned. Since no other
inequality in longitude is observed to result from this, it may
be reasonably explained by a certain approach of the planet to
and withdrawal from the center of the deferent® along a

® Again Miiller erroneously translates by “in the quadratures” (ZE, XII, 381).
Mercury, like Venus, cannot come to quadrature (cf. above, p. 84, n. 80).

® Page 60, above.

* The analysis made above (p. 82, n. 75) for Venus is equaily applicable
here. In De rev. R (mean value) = 3,763, r = 10,000, and E (mean value) =
736 {Th 382.9-10, 382.27-183.2). Then in De rev. r'R = 10,000:3763 = 25:
g.41, while in the Commentarsolus r R = 2§:9.40; in De rev. r:E = 10,000:736
= 25:1.84, while in the Commentarsolus r:E == 25:1.68. The radius of the second
epicycle {Commentariolus) = % E. But the radius of the smaller eccentric {De
rev.) = 13 E, only where E denotes the eccentricity of the outer eccentric (Th
377.11-55), as set down in conformity with the general planetary theory used in
De rev. As in the case of Mars (see above, p. 77, n. §8), Copernicus modifies |
the ratio; the radius of the smaller eccentric = 212 (Th 382.8-g), or %5 E, where
E denotes the mean eccentricity of the outer eccentric.

* Miiller translates longe minori apparet ambitu sidus movers hy: “so scheint
der Planet sich viel langsamer zu bewegen” (the planet appears to move much
more slowly) ; and longe etiam maiore by: “viel schneller” (much more swiftly;
ZE, X11, 381). However, Copernicus is concerned here with the variations, not
in Mercury’s velocity, but in its distence from the center of the great circle.

*Failing to recognize that guadratura is used here and again near the close
of this paragraph in the sense of “guadrant” (see above, p. 4%, n. 163), Miller
inaccurately translates by “in the quadratures® (ZE, XII, 381, 382),

% S: g centro orbis; V: centri orbis, Prowe accepted V, although § is certainly
correct.



straight line. This motion must be produced by two small
circles stationed about the center of the greater epicycle, their
axes being parallel to the axis of the deferent. The center of the
greater epicycle, or of the whole epicyclic structure, lies on the
circumference of the small circle that is situated between this
center and the outer small circle. The distance from this center

to the center of the inner circle is exactly® equal to the distance
from the latter center to the center of the outer circle.” This dis-

tance has been found to be 14% minutes® of one unit of the

®'S, V: asse. For this sound reading Curtze incorrectly substituted axe (MCV,
I, 17.5), which Prowe accepted (PII, 201.10). By ignoring the rules of syntax
Miiller contrived to incorporate axe in his translation,

* Let the dotted circumference (Fig. 24) represent the inner small circle with

b
-
\'5.’ -

A
Ficore 24

its center at B; and the unbroken circumference, the outer small circle with it
center at C. The center of the greater epicycle is at A; and AB = BC,

*S: minut. 14 et medioy V: minutibus 24 et medio. Prowe accepted V, al-
though S is cersinly correct, as the closing words of this paragraph show, Again
Copernicus’s nosetions in his copy of the Tables of Regiomontanus aid us. For
the entry concerning Mercury gives values for the deferent and epicycles that
agree with those in our text. Then it adds that the inequality of the diameter is
29 niinutes (d®ersitas diametri o.29). Now Curtze, Prowe, and Miiller quoted
the entry in their notes (MCV, I, 16 n; PII, 201 n; ZE, XII, 38y, n. 78). All
three called attention to the agreement between the entry and our text with ref-
erence to the deferent and epicycles. But they failed to see that the “approach and
withdrawal” of our text is identical with the “inequality of the diameter” in the
entry; and that the value of 29 minutes given in both places establishes the cor-
rectness of S as against V.

This value varies but slightly from Ptolemy’s. In his system, the inequality is
produced by a small circle upon which the center of the eccentric revolves (HII,
2§2.26-253.6, 256.15-22; cf. 'Th 376.17-24). If we compare the radius of the
small circle with the sum of the radii of the eccentric and epicycle (BII, 279.15-



2 § by which I have measured the relative stzes of all the arcles.
The motion of the outer small circle performs two revolutions
in a tropical year,”” while the inner one completes four in the
same time with twice the velocity in the opposite direction. By
this composite motion the centers of the greater epicycle are
carrted along a straight line, just as I explained with regard
to the librations in latitude.”® Therefore, in the aforementioned
positions of the earth with respect to the apse, the center of
the greater epicycle is nearest to the center of the deferent;
and it 1s most remote, when the earth i1s at a quadrant’s dis-
tance® from these positions. When the earth is at the mid-
points, that 1s, 45° from the points just mentioned, the center
of the greater epicycle joins the center of the outer® small
circle, and both centers coincide.® The amount of this with-

18), we get the ratio 1:27%, while in the Cosmsmentarsodus the corresponding
ratio is 1 :24 (2¢M:gP241m + 104110 - g4m)

In De rev. Copernicus represents the inequality by adding an epicycle to the
outer eccentric {Th 377.4-8, 18-23): so that, if we include this refinement, his
arrangement for Mercury in De rev. is bieccentrepicyclic rather than eccentrec-
centric {Th 377.23-26). But he does not alter the amount of the inequality. For
he puts the diameter of the epicycle at 380, where r = 10,000 (Th 382.23-27,
384.9-14). Then the amount of the inequality is 190 (r = 10,000), or 28% min-
utes, where r =13,

" Miiller failed to recognize amnus wertens as the term for “tropical year”
(see p. 46, above).

" See the closing paragraph of the section on “I'he Three Superior Planew.”

* Miiller omitted exterioris from his translation (ZE, XII, 382),

™ Figure 25 may serve to clarify this motion in libration. In the initial posi-
tion, the earth is at E1 on the produced apse-line, the center of the greater epicycle
is at A, the center of the inner small circle is at B1, and the center of the outer
small circle is at C. While the earth moves 45° from Ei to E2, the outer circle
rotates through a quadrant, thereby moving the center of the inner circle from
B1 to B2. But during this interval, the inner circle rotates through a semicircle,
thereby bringing the center of the epicycle to C. As the earth moves 45° from
E3 to Eg, the center of the inner circle reaches Bs, and the center of the epicycle
comes to D. As the earth moves from Es to E4, the center of the inner circle goes
to B4, and the center of the epicycle to C. When the earth arrives at Es, the
center of the inner circle returns to Bi, and the center of the epicycle to A. While
the earth completes the remaining semicircle Es-Eg-E7-Es-Ei1, the small circles
repeat their previous motion. Therefore, whenever the earth is on the produced
apse-line (E1 or Es), the center of the greater epicycle is nearest (A) to the
center of the deferent. When the earth is at a quadrant’s distance from the apse-



drawal and approach is 29 minutes® of one of the above-
mentioned units. This, then, is the motion of Mercury in longi-

tude.

Its motion in latitude is exactly like that of Venus, but always
in the opposite hemisphere. For where Venus is in north lati-
tude, Mercury is in south. Its deferent is inclined to the ecliptic

at an angle of 7°.** The deviation, which is always south, never

line {E3 or E7), the center of the epicycle is most remote (D) from the center

of the deferent, When the earth is at E2, E4, Ed, or Es, the center of the epicycle
coincides with (, the center of the outer small circle.

E;g
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™ 1n De rev. the angle is given as 6° 15° for the declinations, and 7° for the

reflexions (Th 424.23-27, 431.4~g). These were Ptolemy’s values (HIIL, §36.20-
22’ 57509‘11)0
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exceeds %°.1% For the rest, what was said about the latitudes
of Venus may be underst.»od here also, to avoid repetition.

Then Mercury runs on seven circles in all; Venus on five;
the earth on three, and round it the moon on four; finally
Mars, Jupiter, and Saturn on five each. Altogether, therefore,
thirty-four arcles sufhce to explain the entire structure of the
universe and the entire ballet of the planets.

1% This was the traditional estimate (Th 433.20-25) ; but in De reév. Copernicus
puts i at s1’ = 18" (Th 435.4-85 440-41). Miller rendered this sentence by:
“doch iibersteigt die Ablenkung nach Stiden nie den zwélften Teil eines Grades”
(the southward deviation never exceeds ¥12°; ZE, XII, 382). This version omit
semper, and puts dodrantesn = Yi2. For Y12 Copernicus wrote the usual word
uncia (Th 159.28).
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Book One

INTRODUCTION

Among the many various literary and artistic pursuits which invigorate men’s
minds, the strongest affection and utmost zeal should, I think, promote the studies
concerned with the most beautiful objects, most deserving to be known. This
is the nature of the discipline which deals with the universe’s divine revolutions,
the asters’ motions, sizes, distances, risings and settings, as well as the causes
of the other phenomena in the sky, and which, in short, explains its whole ap-
pearance. What indeed is more beautiful than heaven, which of course contains all
things of beauty? This is proclaimed by its very names [in Latin], caelum and
mundus, the latter denoting purity and ornament, the former a carving. On account
of heaven’s transcendent perfection most philosophers have called it a visible god.
If then the value of the arts is judged by the subject matter which they treat,
that art will be by far the foremost which is labeled astronomy by some, astrology
by others, but by many of the ancients, the consummation of mathematics. Un-
questionably the summit of the liberal arts and most worthy of a free man, it is
supported by almost all the branches of mathematics. Arithmetic, geometry, optics,
surveying, mechanics and whatever others there are all contribute to it.

Although all the good arts serve to draw man’s mind away from vices and
lead it toward better things, this function can be more fully performed by this
art, which also provides extraordinary intellectual pleasure. For when a man is
occupied with things which he sees established in the finest order and directed by
divine management, will not the unremitting contemplation of them and a certain
familiarity with them stimulate him to the best and to admiration for the Maker
of everything, in whom are all happiness and every good ? For would not the godly
Psalmist [92:4] in vain declare that he was made glad through the work of the
Lord and rejoiced in the works of His hands, were we not drawn to the con-
templation of the highest good by this means, as though by a chariot?

The great benefit and adornment which this art confers on the commonwealth
(not to mention the countless advantages to individuals) are most excellently
observed by Plato. In the Laws, Book VII, he thinks that it should be cultivated
chiefly because by dividing time into groups of days as months and years, it would
keep the state alert and attentive to the festivals and sacrifices. Whoever denies
its necessity for the teacher of any branch of higher learning is thinking foolishly,
according to Plato. In his opinion it is highly unlikely that anyone lacking the
requisite knowledge of the sun, moon, and other heavenly bodies can become and
be called godlike.

However, this divine rather than human science, which investigates the loftiest
subjects, is not free from perplexities. The main reason is that its principles and
assumptions, called ‘hypotheses” by the Greeks, have been a source of disa-
greement, as we see, among most of those who undertook to deal with this subject,
and so they did not rely on the same ideas. An additional reason is that the motion



REVOLUTIONS

of the planets and the revolution of the stars could not be measured with
numerical precision and completely understood except with the passage of time
and the aid of many earlier observations, through which this knowledge was
transmitted to posterity from hand to hand, so to say. To be sure, Claudius
Ptolemy of Alexandria, who far excels the rest by his wonderful skill and industry,
brought this entire art almost to perfection with the help of observations extending
over a period of more than four hundred years, so that there no longer seemed
to be any gap which he had not closed. Nevertheless very many things, as we per-
ceive, do not agree with the conclusions which ought to follow from his system,
and besides certain other motions have been discovered which were not yet
known to him. Hence Plutarch too, in discussing the sun’s tropical year, says
that so far the motion of the heavenly bodies has eluded the skill of the astrono-
mers. For, to use the year itself as an example, it is well known, I think, how
different the opinions concerning it have always been, so that many have abandoned
all hope that an exact determination of it could be found. The situation is the
same with regard to other heavenly bodies.

Nevertheless, to avoid giving the impression that this difficulty is an excuse
for indolence, by the gracg of God, without whom we can accomplish nothing,
I shall attempt a broader inquiry into these matters. For, the number of aids
we have to assist our enterprise grows with the interval of time extending from
the originators of this art to us. Their discoveries may be compared with what
I have newly found. I acknowledge, moreover, that I shall treat many topics differ-
ently from my predecessors, and yet I shall do so thanks to them, for it was they
who first opened the road to the investigation of these very questions.

THE UNIVERSE IS SPHERICAL Chapter 1

First of all, we must note that the universe is spherical. The reason is either
that, of all forms, the sphere is the most perfect, needing no joint and being a com-
plete whole, which can be neither increased nor diminished ; or that it is the most
capacious of figures, best suited to enclose and retain all things; or even that
all the separate parts of the universe, I mean the sun, moon, planets and stars,
are seen to be of this shape; or that wholes strive to be circumscribed by this
boundary, as is apparent in drops of water and other fluid bodies when they
seek to be self-contained. Hence no one will question the attribution of this form
to the divine bodies.

THE EARTH TOO IS SPHERICAL Chapter 2

The earth also is spherical, since it presses upon its center from every direction.
Yet it is not immediately recognized as a perfect sphere on account of the great
height of the mountains and depth of the valleys. They scarcely alter the general
sphericity of the earth, however, as is clear from the following considerations.
For a traveler going from any place toward the north, that pole of the daily rota-
tion gradually climbs higher, while the opposite pole drops down an equal amount.
More stars in the north are seen not to set, while in the south certain stars are no
longer seen to rise. Thus Italy does not see Canopus, which is visible in Egypt;
and Italy does see the River’s last star, which is unfamiliar to our area in the colder
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region. Such stars, conversely, move higher in the heavens for a traveller heading
southward, while those which are high in our sky sink down. Meanwhile, moreover,
the elevations of the poles have the same ratio everywhere to the portions of the
earth that have been traversed. This happens on no other figure than the sphere.
Hence the earth too is evidently enclosed between poles and is therefore spherical.
Furthermore, evening eclipses of the sun and moon are not seen by easterners, nor
morning eclipses by westerners, while those occurring in between are seen later
by easterners but earlier by westerners.

The waters press down into the same figure also, as sailors are aware, since
land which is not seen from a ship is visible from the top of its mast. On the
other hand, if a light is attached to the top of the mast, as the ship draws away
from land, those who remain ashore see the light drop down gradually until it
finally disappears, as though setting. Water, furthermore, being fluid by nature,
manifestly always seeks the same lower levels as earth and pusehs up from the
shore no higher than its rise permits. Hence whatever land emerges out of the
ocean is admittedly that much higher.

HOW EARTH FORMS A SINGLE SPHERE Chapter 3
WITH WATER

Pouring forth its seas everywhere, then, the ocean envelops the earth and fills
its deeper chasms. Both tend toward the same center because of their heaviness.
Accordingly there had to be less water than land, to avoid having the water engulf
the entire earth and to have the water recede from some portions of the land and
from the many islands lying here and there, for the preservation of living creatures.
For what are the inhabited countries and the mainland itself but an island larger
than the others?

We should not heed certain peripatetics who declared that the entire body
of water is ten times greater than all the land. For, according to the conjecture
which they accepted, in the transmutation of the elements as one unit of earth
dissolves, it becomes ten units of water. They also assert that the earth bulges out
to some extent as it does because it is not of equal weight everywhere on account
of its cavities, its center of gravity being different from its center of magnitude.
But they err through ignorance of the art of geometry. For they do not realize
that the water cannot be even seven times greater and still leave any part of the
land dry, unless earth as a whole vacated the center of gravity and yielded that
position to water, as if the latter were heavier than itself. For, spheres are to
each other as the cubes of their diameters. Therefore, if earth were the eighth
part to seven parts of water, earth’s diameter could not be greater than the distance
from [their joint] center to the circumference of the waters. So far are they
from being as much as ten times greater [than the land].

Moreover, there is no difference between the earth’s centers of gravity and
magnitude. This can be established by the fact that from the ocean inward the
curvature of the land does not mount steadily in a continuous rise. If it did, it
would keep the sea water out completely and in no way permit the inland seas
and such vast gulfs to intrude. Furthermore, the depth of the abyss would never
stop increasing from the shore of the ocean outward, so that no island or reef
or any form of land would be encountered by sailors on the longer voyages. But



REVOLUTIONS

it is well known that almost in the middle of the inhabited lands barely fifteen
furlongs remain between the eastern Mediterranean and the Red Sea. On the
other hand, in his Geography Ptolemy extended the habitable area halfway around
the world. Beyond that meridian, where he left unknown land, the moderns have
added Cathay and territory as vast as sixty degrees of longitude, so that now the
earth is inhabited over a greater stretch of longitude than is left for the ocean.
To these regions, moreover, should be added the islands discovered in our time
under the rulers of Spain and Portugal, and especially America, named after the
ship’s captain who found it. On account of its still undisclosed size it is thought
to be a second group of inhabited countries. There are also many other islands,
heretofore unknown. So little reason have we to marvel at the existence of antipodes
or antichthones. Indeed, geometrical reasoning about the location of America
compels us to believe that it is diametrically opposite the Ganges district of India.

From all these facts, finally, I think it is clear that land and water together press
upon a single center of gravity; that the earth has no other center of magnitude;
that, since earth is heavier, its gaps are filled with water; and that consequently
there is little water in comparison with land, even though more water perhaps
appears on the surface.

The earth together with its surrounding waters must in fact have such a shape
as its shadow reveals, for it eclipses the moon with the arc of a perfect circle. There-
fore the earth is not flat, as Empedocles and Anaximenes thought; nor drum-
shaped, as Leucippus; nor bowl-shaped, as Heraclitus; nor hollow in another
way, as Democritus; nor again cylindrical, as Anaximander; nor does its lower
side extend infinitely downward, the thickness diminishing toward the bottom,
as Xenophanes taught; but it is perfectly round, as the philosophers hold.

THE MOTION OF THE HEAVENLY BODIES Chapter 4
IS UNIFORM, ETERNAL, AND CIRCULAR OR
COMPOUNDED OF CIRCULAR MOTIONS

I shall now recall to mind that the motion of the heavenly bodies is circular,
since the motion appropriate to a sphere is rotation in a circle. By this very act
the sphere expresses its form as the simplest body, wherein neither beginning nor
end can be found, nor can the one be distinguished from the other, while the sphere
itself traverses the same points to return upon itself.

In connection with the numerous [celestial] spheres, however, there are many
motions. The most conspicuous of all is the daily rotation, which the Greeks
call nuchthemeron, that is, the interval of a day and a night. The entire universe,
with the exception of the earth, is conceived as whirling from east to west in this
rotation. It is recognized as the common measure of all motions, since we even
compute time itself chiefly by the number of days.

Secondly, we see other revolutions as advancing in the opposite direction, that
is, from west to east; I refer to those of the sun, moon, and five planets. The sun
thus regulates the year for us, and the moon the month, which are also very
familiar periods of time. In like manner each of the other five planets completes
its own orbit.

Yet [these motions] differ in many ways [from the daily rotation or first
motion]. In the first place, they do not swing around the same poles as the first
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motion, but run obliquely through the zodiac. Secondly, these bodies are not
seen moving uniformly in their orbits, since the sun and moon are observed to
be sometimes slow, at other times faster in their course. Moreover, we see the
other five planets also retrograde at times, and stationary at either end [of the
regression]. And whereas the sun always advances along its own direct path, they
wander in various ways, straying sometimes to the south and sometimes to the
north; that is why they are called “planets® [wanderers]. Furthermore, they are at
times nearer to the earth, when they are said to be in perigee; at other times they
are farther away, when they are said to be in apogee.

We must acknowledge, nevertheless, that their motions are circular or com~
pounded of several circles, because these nonuniformities recur regularly according
to a constant law. This could not happen unless the motions were circular, since
only the circle can bring back the past. Thus, for example, by a composite motion
of circles the sun restores to us the inequality of days and nights as well as the
four seasons of the year. Several motions are discerned herein, because a simple
heavenly body cannot be moved by a single sphere nonuniformly. For this nonuni-
formity would have to be caused either by an inconstancy, whether imposed
from without or generated from within, in the moving force or by an alteration
in the revolving body. From either alternative, however, the intellect shrinks.
It is improper to conceive any such defect in objects constituted in the best
order.

It stands to reason, therefore, that their uniform motions appear nonuniform
to us. The cause may be either that their circles have poles different [from the
earth’s] or that the earth is not at the center of the circles on which they revolve.
To us who watch the course of these planets from the earth, it happens that our
eye does not keep the same distance from every part of their orbits, but on account
of their varying distances these bodies seem larger when nearer than when farther
away (as has been proved in optics). Likewise, in equal arcs of their orbits their
motions will appear unequal in equal times on account of the observer’s varying
distance. Hence I deem it above all necessary that we should carefully scrutinize
the relation of the earth to the heavens lest, in our desire to examine the loftiest
objects, we remain ignorant of things nearest to us, and by the same error attribute
to the celestial bodies what belongs to the earth.

DOES CIRCULAR MOTION SUIT THE EARTH? Chapter 5
WHAT IS ITS POSITION?

Now that the earth too has been shown to have the form of a sphere, we must
in my opinion see whether also in this case the form entails the motion, and what
place in the universe is occupied by the earth. Without the answers to these
questions it is impossible to find the correct explanation of what is seen in the
heavens. To be sure, there is general agreement among the authorities that the
earth is at rest in the middle of the universe. They hold the contrary view to be
inconceivable or downright silly. Nevertheless, if we examine the matter more
carefully, we shall see that this problem has not yet been solved, and is therefore
by no means to be disregarded.

Every observed change of place is caused by a motion of either the observed
object or the observer or, of course, by an unequal displacement of each. For
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when things move with equal speed in the same direction, the motion is not
perceived, as between the observed object and the observer, I mean. It is the
earth, however, from which the celestial ballet is beheld in its repeated perform-
ances before our eyes. Therefore, if any motion is ascribed to the earth, in all things
outside it the same motion will appear, but in the opposite direction, as though
they were moving past it. Such in particular is the daily rotation, since it seems
to involve the entire universe except the earth and what is around it. However,
if you grant that the heavens have no part in this motion but that the earth rotates
from west to east, upon earnest consideration you will find that this is the actual
situation concerning the apparent rising and setting of the sun, moon, stars and
planets. Moreover since the heavens, which enclose and provide the setting for
everything, constitute the space common to all things, it is not at first blush clear
why motion should not be attributed rather to the enclosed than to the enclosing,
to the thing located in space rather than to the framework of space. This opinion
was indeed maintained by Heraclides and Ecphantus, the Pythagoreans, and by
Hicetas of Syracuse, according to Cicero. They rotated the earth in the middle
of the universe, for they ascribed the setting of the stars to the earth’s interposition,
and their rising to its withdrawal.

If we assume its daily rotation, another and no less important question follows
concerning the earth’s position. To be sure, heretofore there has been virtually
unanimous acceptance of the belief that the middle of the universe is the earth.
Anyone who denies that the earth occupies the middle or center of the universe
may nevertheless assert that its distance [therefrom] is insignificant in comparison
with [the distance of] the sphere of the fixed stars, but perceptible and noteworthy
in relation to the spheres of the sun and the other planets. He may deem this to
be the reason why their motions appear nonuniform, as conforming to a center
other than the center of the earth. Perhaps he can [thereby] produce a not inept
explanation of the apparent nonuniform motion. For the fact that the same planets
are observed nearer to the earth and farther away necessarily proves that the
center of the earth is not the center of their circles. It is less clear whether the
approach and withdrawal are executed by the earth or the planets.

It will occasion no surprise if, in addition to the daily rotation, some other
motion is assigned to the earth. That the earth rotates, that it also travels with
several motions, and that it is one of the heavenly bodies are said to have been the
opinions of Philolaus the Pythagorean. He was no ordinary astronomer,
inasmuch as Plato did not delay going to Italy for the sake of visiting him, as
Plato’s biographers report.

But many have thought it possible to prove by geometrical reasoning that the
earth is in the middle of the universe; that being like a point in relation to the
immense heavens, it serves as their center; and that it is motionless because, when
the universe moves, the center remains unmoved, and the things nearest to the
center are carried most slowly.
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THE IMMENSITY OF THE HEAVENS Chapter 6
COMPARED TO THE SIZE OF THE EARTH

The massive bulk of the earth does indeed shrink to insignificance in compari-
son with the size of the heavens. This can be ascertained from the fact that the
boundary circles (for that is the translation of the Greek term horizons) bisect the
entire sphere of the heavens. This could not happen if the earth’s size or distance
from the universe’s center were noteworthy in comparison with the heavens.
For, a circle that bisects a sphere passes through its center, and is the greatest
circle that can be described on it.

Thus, let circle ABCD be a horizon, and let the earth, from which we do our
observing, be E, the center of the horizon, which separates what is seen from what
is not seen. Now, through a dioptra or horoscopic instrument or water level
placed at E, let the first point of the Crab be sighted rising at point C, and at
that instant the first point of the Goat is perceived to be setting at A. Then 4, E,
and C are on a straight line through the dioptra. This line is evidently a diameter
of the ecliptic, since six visible signs form a semicircle, and E, the [line’s] center,
is identical with the horizon’s center. Again, let the signs shift their position
until the first point of the Goat rises at B. At that time the Crab will also be
observed setting at D. BED will be a straight line and a diameter of the ecliptic.
But, as we have already seen, AEC also is a diameter of the same circle. Its center,
obviously, is the intersection [of the diameters]. A horizon, then, in this way
always bisects the ecliptic, which is a great circle of the sphere. But on a sphere,
if a circle bisects any great circle, the bisecting circle is itself a great circle. Con-
sequently a horizon is one of the great circles, and its center is clearly identical
with the center of the ecliptic.

Yet a line drawn from the earth’s surface [to a point in the firmament] must
be distinct from the line drawn from the earth’s center [to the same point]. Nev-
ertheless, because these lines are immense in relation to the earth, they become
like parallel lines [III, 15). Because their terminus is enormously remote they ap-
pear to be a single line. For in comparison with their length the space enclosed by
them becomes imperceptible, as is demonstrated in optics. This reasoning certainly
makes it quite clear that the heavens are immense by comparison with the earth
and present the aspect of an infinite magnitude, while on the testimony of the
senses the earth is related to the heavens as a point to a body, and a finite to an
infinite magnitude.

But no other conclusion seems to have been established. For it does not
follow that the earth must be at rest in the middle of the universe. Indeed, a rota-
tion in twenty-four hours of the enormously vast universe should astonish us
even more than a rotation of its least part, which is the earth. For, the argument
that the center is motionless, and what is nearest the center moves the least, does
not prove that the earth is at rest in the middle of the universe.

To take a similar case, suppose you say that the heavens rotate but the poles
are stationary, and what is closest to the poles moves the least. The Little Bear,
for example, being very close to the pole, is observed to move much more slowly
than the Eagle or the Little Dog because it describes a smaller circle. Yet all these
constellations belong to a single sphere. A sphere’s movement, vanishing at its
axis, does not permit an equal motion of all its parts. Nevertheless these are brought
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round in equal times, though not over equal spaces, by the rotation of the whole
sphere. The upshot of the argument, then, is the claim that the earth as a part
of the celestial sphere shares in the same nature and movement so that, being
close to the center, it has a slight motion. Therefore, being a body and not the
center, it too will describe arcs like those of a celestial circle, though smaller,
in the same time. The falsity of this contention is clearer than daylight. For it
would always have to be noon in one place, and always midnight in another, so
that the daily risings and settings could not take place, since the motion of the
whole and the part would be one and inseparable.

But things separated by the diversity of their situations are subject to a very
different relation: those enclosed in a smaller orbit revolve faster than those
traversing a bigger circle. Thus Saturn, the highest of the planets, revolves in
thirty years; the moon, undoubtedly the nearest to the earth, completes its course
in a month; and to close the series, it will be thought, the earth rotates in the period
of a day and a night. Accordingly the same question about the daily rotation
emerges again. On the other hand, likewise still undetermined is the earth’s
position, which has been made even less certain by what was said above. For that
proof establishes no conclusion other than the heavens’ unlimited size in relation
to the earth. Yet how far this immensity extends is not at all clear. At the opposite
extreme are the very tiny indivisible bodies called “atoms”’. Being imperceptible,
they do not immediately constitute a visible body when they are taken two or
a few at a time. But they can be multiplied to such an extent that in the end there
are enough of them to combine in a perceptible magnitude. The same may be said
also about the position of the earth. Although it is not in the center of the universe,
nevertheless its distance therefrom is still insignificant, especially in relation to
the sphere of the fixed stars.

WHY THE ANCIENTS THOUGHT THAT THE Chapter 7
EARTH REMAINED AT REST IN THE MIDDLE
OF THE UNIVERSE AS ITS CENTER

Accordingly, the ancient philosophers sought to establish that the earth remains
at rest in the middle of the universe by certain other arguments. As their main
reason, however, they adduce heaviness and lightness. Earth is in fact the heaviest
element, and everything that has weight is borne toward it in an effort to reach
its inmost center. The earth being spherical, by their own nature heavy objects
are carried to it from all directions at right angles to its surface. Hence, if they were
not checked at its surface, they would collide at its center, since a straight line
perpendicular to a horizontal plane at its point of tangency with a sphere leads
to the [sphere’s] center. But things brought to the middle, it seems to follow, come
to rest at the middle. All the more, then, will the entire earth be at rest in the
middle, and as the recipient of every falling body it will remain motionless thanks
to its weight.

In like manner, the ancient philosophers analyze motion and its nature in
a further attempt to confirm their conclusion. Thus, according to Aristotle, the
motion of a single simple body is simple; of the simple motions, one is straight
and the other is circular; of the straight motions, one is upward and the other is
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downward. Hence every simple motion is either toward the middle, that is,
downward; or away from the middle, that is, upward; or around the middle,
that is, circular. To be carried downward, that is, to seek the middle, is a property
only of earth and water, which are considered heavy; on the other hand, air and
fire, which are endowed with lightness, move upward and away from the middle.
To these four elements it seems reasonable to assign rectilinear motion, but to
the heavenly bodies, circular motion around the middle. This is what Aristotle
says [Heavens, 1, 2; II, 14].

Therefore, remarks Ptolemy of Alexandria [Syntaxis,I, 7], if the earth were
to move, merely in a daily rotation, the opposite of what was said above would
have to occur, since a motion would have to be exceedingly violent and its speed
unsurpassable to carry the entire circumference of the earth around in twenty-four
hours. But things which undergo an abrupt rotation seem utterly unsuited to gather
[bodies to themselves], and seem more likely, if they have been produced by com-
bination, to fly apart unless they are held together by some bond. The earth would
long ago have burst asunder, he says, and dropped out of the skies (a quite prepos-
terous notion); and, what is more, living creatures and any other loose weights
would by no means remain unshaken. Nor would objects falling in a straight
line descend perpendicularly to their appointed place, which would meantime
have been withdrawn by so rapid a movement. Moreover, clouds and anything
else floating in the air would be seen drifting always westward.

THE INADEQUACY OF THE PREVIOUS Chapter 8
ARGUMENTS AND A REFUTATION OF THEM

For these and similar reasons forsooth the ancients insist that the earth remains
at rest in the middle of the universe, and that this is its status beyond any doubt.
Yet if anyone believes that the earth rotates, surely he will hold that its motion
is natural, not violent. But what is in accordance with nature produces effects
contrary to those resulting from violence, since things to which force or violence
is applied must disintegrate and cannot long endure. On the other hand, that
which is brought into existence by nature is well-ordered and preserved in its
best state. Ptolemy has no cause, then, to fear that the earth and everything earthly
will be disrupted by a rotation created through nature’s handiwork, which is
quite different from what art or human intelligence can accomplish.

But why does he not feel this apprehension even more for the universe, whose
motion must be the swifter, the bigger the heavens are than the earth? Or have
the heavens become immense because the indescribable violence of their motion
drives them away from the center? Would they also fall apart if they came to
a halt? Were this reasoning sound, surely the size of the heavens would likewise
grow to infinity. For the higher they are driven by the power of their motion,
the faster that motion will be, since the circumference of which it must make the
circuit in the period of twenty-four hours is constantly expanding; and, in turn,
as the velocity of the motion mounts, the vastness of the heavens is enlarged. In
this way the speed will increase the size, and the size the speed, to infinity. Yet
according to the familiar axiom of physics that the infinite cannot be traversed
or moved in any way, the heavens will therefore necessarily remain stationary.

But beyond the heavens there is said to be no body, no space, no void, abso-
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lutely nothing, so that there is nowhere the heavens can go. In that case it is really
astonishing if something can be held in check by nothing. If the heavens are infi-
nite, however, and finite at their inner concavity only, there will perhaps be more
reason to believe that beyond the heavens there is nothing. For, every single thing,
no matter what size it attains, will be inside them, but the heavens will abide mo-
tionless. For, the chief contention by which it is sought to prove that the universe
is finite is its motion. Let us therefore leave the question whether the universe
is finite or infinite to be discussed by the natural philosophers.

We regard it as a certainty that the earth, enclosed between poles, is bounded
by a spherical surface. Why then do we still hesitate to grant it the motion appro-
priate by nature to its form rather than attribute a movement to the entire universe,
whose limit is unknown and unknowable ? Why should we not admit, with regard
to the daily rotation, that the appearance is in the heavens and the reality in the
earth? This situation closely resembles what Vergil’s Aeneas says:

Forth from the harbor we sail, and the land and the cities slip backward
[Aeneid, 111, 72].

For when a ship is floating calmly along, the sailors see its motion mirrored in
everything outside, while on the other hand they suppose that they are stationary,
together with everything on board. In the same way, the motion of the earth can
unquestionably produce the impression that the entire universe is rotating.

Then what about the clouds and the other things that hang in the air in any
manner whatsoever, or the bodies that fall down, and conversely those that rise
aloft ? We would only say that not merely the earth and the watery element joined
with it have this motion, but also no small part of the air and whatever is linked
in the same way to the earth. The reason may be either that the nearby air, mingling
with earthy or watery matter, conforms to the same nature as the earth, or that
the air’s motion, acquired from the earth by proaimity, shares without resistance
in its unceasing rotation. No less astonishingly, on the other hand, is the celestial
movement declared to be accompanied by the uppermost belt of air. This is indi-
cated by those bodies that appear suddenly, I mean, those that the Greeks
called “comets” and “‘bearded stars”. Like the other heavenly bodies, they rise
and set. They are thought to be generated in that region. That part of the air,
we can maintain, is unaffected by the earth’s motion on account of its great distance
from the earth. The air closest to the earth will accordingly seem to be still. And
so will the things suspended in it, unless they are tossed to and fro, as indeed they
are, by the wind or some other disturbance. For what else is the wind in the air
but the wave in the sea?

We must in fact avow that the mosion of falling and rising bodies in the
framework of the universe is twofold, being in every case a compound of straight
and circular. For, things that sink of their own weight, being predominantly
earthy, undoubtedly retain the same nature as the whole of which they are parts.
Nor is the explanation different in the case of those things, which, being fiery,
are driven forcibly upward. For also fire here on the earth feeds mainly on earthy
matter, and flame is defined as nothing but blazing smoke. Now it is a property
of fire to expand what it enters. It does this with such great force that it cannot
be prevented in any way by any device from bursting through restraints and
completing its work. But the motion of expansion is directed from the center to
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the circuinference. Therefore, if any part of the earth is set afire, it is carried from
the middle upwards. Hence the statement that the motion of a simple body is
simple holds true in particular for circular motion, as long as the simple body
abides in its natural place and with its whole. For when it is in place, it has none
but circular motion, which remains wholly within itself like a body at rest. Recti-
linear motion, however, affects things which leave their natural place or are
thrust out of it or quit it in any manner whatsoever. Yet nothing is so incompatible
with the orderly arrangement of the universe and the design of the totality as
something out of place. Therefore rectilinear motion occurs only to things that
are not in proper condition and are not in complete accord with their nature, when
they are separated from their whole and forsake its unity.

Furthermore, bodies that are carried upward and downward, even when
deprived of circular motion, do not execute a simple, constant, and uniform motion.
For they cannot be governed by their lightness or by the impetus of their weight.
Whatever falls moves slowly at first, but increases its speed as it drops. On the
other hand, we see this earthly fire (for we behold no other), after it has been lifted
up high, slacken all at once, thereby revealing the reason to be the violence
applied to the earthy matter. Circular motion, however, always rolls along uniformly,
since it has an unfailing cause. But rectilinear motion has a cause that quickly
stops functioning. For when rectilinear motion brings bodies to their own place,
they cease to be heavy or light, and their motion ends. Hence, since circular
motion belongs to wholes, but parts have rectilinear motion in addition, we can
say that “‘circular” subsists with “‘rectilinear” as *“being alive’ with *“‘being sick™.
Surely Aristotle’s division of simple motion into three types, away from the
middle, toward the middle, and around the middle, will be construed merely as
a logical exercise. In like manner we distinguish line, point, and surface, even
though one cannot exist without another, and none of them without body.

As a quality, moreover, immobility is deemed nobler and more divine than
change and instability, which are therefore better suited to the earth than to the
universe. Besides, it would seem quite absurd to attribute motion to the frame-
work of space or that which encloses the whole of space, and not, more appro-
priately, to that which is enclosed and occupies some space, namely, the earth.
Last of all, the planets obviously approach closer to the earth and recede farther
from it. Then the motion of a single body around the middle, which is thought
to be the center of the earth, will be both away from the middle and also toward
it. Motion around the middle, consequently, must be interpreted in a more general
way, the sufficient condition being that each such motion encircle its own center.
You see, then, that all these arguments make it more likely that the earth moves
than that it is at rest. This is especially true of the daily rotation, as particularly
appropriate to the earth. This is enough, in my opinion, about the first part of
the question.

CAN SEVERAL MOTIONS BE ATTRIBUTED Chapter 9
TO THE EARTH? THE CENTER OF THE UNIVERSE

Accordingly, since nothing prevents the earth from moving, I suggest that
we should now consider also whether several motions suit it, so that it can be
regarded as one of the planets. For, it is not the center of all the revolutions. This
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is indicated by the planets’ apparent nonuniform motion and their varying distances
from the earth. These phenomena cannot be explained by circles concentric with
the earth. Therefore, since there are many centers, it will not be by accident that
the further question arises whether the center of the universe is identical with
the center of terrestrial gravity or with some other point. For my part I believe
that gravity is nothing but a certain natural desire, which the divine providence
of the Creator of all things has implanted in parts, to gather as a unity and a whole
by combining in the form of a globe. This impulse is present, we may suppose,
also in the sun, the moon, and the other brilliant planets, so that through its
operation they remain in that spherical shape which they display. Nevertheless,
they swing round their circuits in divers ways. If, then, the earth too moves in
other ways, for example, about a center, its additional motions must likewise be
reflected in many bodies outside it. Among these motions we find the yearly revolu-
tion. For if this is transformed from a solar to a terrestrial movement, with the
sun acknowledged to be at rest, the risings and settings which bring the zodiacal
signs and fixed stars into view morning and evening will appear in the same way.
The stations of the planets, moreover, as well as their retrogradations and [resump-
tions of] forward motion will be recognized as being, not movements of the
planets, but a motion of the earth, which the planets borrow for their own appear-
ances. Lastly, it will berealized that the sun occupies the middle of the universe.
All these facts are disclosed to us by the principle governing the order in which
the planets follow one another, and by the harmony of the entire universe, if
only we look at the matter, as the saying goes, with both eyes.

THE ORDER OF THE HEAVENLY SPHERES Chapter 10

Of all things visible, the highest is the heaven of the fixed stars. This, I see,
is doubted by nobody. But the ancient philosophers wanted to arrange the planets
in accordance with the duration of the revolusions. Their principle assumes that
of objects moving equally fast, those farther away seem to travel more slowly,
as is proved in Euclid’s Oprics. The moon revolves in the shortest period of time
because, in their opinion, it runs on the smallest circle as the nearest to the earth.
The highest planet, on the other hand, is Saturn, which completes the biggest
circuit in the longest time. Below it is Jupiter, followed by Mars.

With regard to Venus and Mercury, however, differences of opinion are found.
For, these planets do not pass through every elongation from the sun, as the other
planets do. Hence Venus and Mercury are located above the sun by some authori-
tiesy like Plato’s Timaeus [38 D], but below the sun by others, like Ptolemy [Syn-
taxis, IX, 1] and many of the moderns. Al-Bitruji places Venus above the
sun, and Mercury below it.

According to Plato’s followers, all the planets, being dark bodies otherwise,
shine because they receive sunlight. If they were below the sun, therefore, they
would undergo no great elongation from it, and hence they would be seen halved
or at any rate less than fully round. For, the light which they receive would be
reflected mostly upward, that is, toward the sun, as we see in the new or dying
moon. In addition, they argue, the sun must sometimes be eclipsed by the inter-
position of these planets, and its light cut off in proportion to their size. Since this
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is never observed, these planets do not pass beneath the sun at all, according to
those who follow Plato.

On the other hand, those who locate Venus and Mercury below the sun base
their reasoning on the wide space which they notice between the sun and the moon.
For the moon’s greatest distance from the earth is 64 /g earth-radii. This is con-
tained, according to them, about 18 times in the sun’s least distance from the
earth, which is 1160 earth-radii. Therefore between the sun and the moon there
are 1096 earth-radii [221160-64'/¢]. Consequently, to avoid having so vast a space
remain empty, they announce that the same numbers almost exactly fill up the
apsidal distances, by which they compute the thickness of those spheres. Thus
the moon’s apogee is followed by Mercury’s perigee. Mercury’s apogee is suc-
ceeded by the perigee of Venus, whose apogee, finally, almost reaches the sun’s
perigee. For between the apsides of Mercury they calculate about 177 2/, earth-
radii. Then the remaining space is very nearly filled by Venus’ interval of 910
earth-radii.

Therefore they do not admit that these heavenly bodies have any opacity
like the moon’s. On the contrary, these shine either with their own light or with
the sunlight absorbed throughout their bodies. Moreover, they do not eclipse the
sun, because it rarely happens that they interfere with our view of the sun, since
they generally deviate in latitude. Besides, they are tiny bodies in comparison
with the sun. Venus, although bigger than Mercury, can occult barely a hundredth
of the sun. So says Al-Battani of Raqga, who thinks that the sun’s diameter is
ten times larger [than Venus’], and therefore so minute a speck is not easily de-
scried in the most brilliant light. Yet in his Paraphrase of Ptolemy, Ibn Rushd
reports having seen something blackish when he found a conjunction of the sun
and Mercury indicated in the tables. And thus these two planets are judged to be
moving below the sun’s sphere.

But this reasoning also is weak and unreliable. This is obvious from the fact
that there are 38 earth-radii to the moon’s perigee, according to Ptolemy [Syn-
taxis, V, 13], but more than 49 according to a more accurate determination, as
will be made clear below. Yet so great a space contains, as we know, nothing
but air and, if you please, also what is called ‘“the element of fire”. Moreover,
the diameter of Venus’ epicycle which carries it 45° more or less to either side
of the sun, must be six times longer than the line drawn from the earth’s cen-
ter to Venus’ perigee, as will be demonstrated in the proper place [V, 21]. In
this entire space which would be taken up by that huge epicycle of Venus and
which, moreover, is so much bigger than what would accommodate the earth,
air, aether, moon, and Mercury, what will they say is contained if Venus re-
volved around a motionless earth?

Ptolemy [Syntraxis, IX, 1] argues also that the sun must move in the middle
between the planets which show every elongation from it and those which do
not. This argument carries no conviction because its error is revealed by the
fact that the moon too shows every elongation from the sun.

Now there are those who locate Venus and then Mercury below the sun, or
separate these planets [from the sun] in some other sequence. What reason will
they adduce to explain why Venus and Mercury do not likewise traverse separate
orbits divergent from the sun, like the other planets, without violating the arrange-
ment [of the planets] in accordance with their [relative] swiftness and slowness ?
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Then one of two alternatives will have to be true. Either the earth is not the
center to which the order of the planets and spheres is referred, or there really
is no principle of arrangement nor any apparent reason why the highest place
belongs to Saturn rather than to Jupiter or any other planet.

In my judgement, therefore, we should not in the least disregard what was
familiar to Martianus Capella, the author of an encyclopedia, and to certain
other Latin writers. For according to them, Venus and Mercury revolve around
the sun as their center. This is the reason, in their opinion, why these planets
diverge no farther from the sun than is permitted by the curvature of their revolu-
tions. For they do not encircle the earth, like the other planets, but “have opposite
circles”. Then what else do these authors mean but that the center of their spheres
is near the sun? Thus Mercury’s sphere will surely be enclosed within Venus’,
which by common consent is more than twice as big, and inside that wide region
it will occupy a space adequate for itself. If anyone seizes this opportunity to link
Saturn, Jupiter, and Mars also to that center, provided he understands their
spheres to be so large that together with Venus and Mercury the earth too is
enclosed inside and encircled, he will not be mistaken, as is shown by the regular
pattern of their motions.

For [these outer planets] are always closest to the earth, as is well known,
about the time of their evening rising, that is, when they are in opposition to the
sun, with the earth between them and the sun. On the other hand, they are at
their farthest from the earth at the time of their evening setting, when they
become invisible in the vicinity of the sun, namely, when we have the sun between
them and the earth. These facts are enough to show that their center belongs
more to the sun, and is identical with the center around which Venus and Mercury
likewise execute their revolutions.

But since all these planets are related to a single center, the space remaining
between Venus’ convex sphere and Mars’ concave sphere must be set apart as
also a sphere or spherical shell, both of whose surfaces are concentric with those
spheres. This [intercalated sphere] receives the earth together with its attendant,
the moon, and whatever is contained within the moon’s sphere. Mainly for the
reason that in this space we find quite an appropriate and adequate place for
the moon, we can by no means detach it from the earth, since it is incontrovert-
ibly nearest to the earth.

Hence I feel no shame in asserting that this whole region engirdled by the
moon, and the center of the earth, traverse this grand circle amid the rest of the
planets in an annual revolution around the sun. Near the sun is the center of the
universe. Moreover, since the sun remains stationary, whatever appears as a motion
of the sun is really due rather to the motion of the earth. In comparison with any
other spheres of the planets, the distance from the earth to the sun has a magnitude
which is quite appreciable in proportion to those dimensions. But the size of the
universe is so great that the distance earth-sun is imperceptible in relation to the
sphere of the fixed stars. This should be admitted, I believe, in preference to
perplexing the mind with an almost infinite multitude of spheres, as must be done
by those who kept the earth in the middle of the universe. On the contrary, we
should rather heed the wisdom of nature. Just as it especially avoids producing
anything superfluous or useless, so it frequently prefers to endow a single thing
with many effects.
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All these statements are difficult and almost inconceivable, being of course
opposed to the beliefs of many people. Yet, as we proceed, with God’s help I shall
make them clearer than sunlight, at any rate to those who are not unacquainted
with the science of astronomy. Consequently, with the first principle remaining
intact, for nobody will propound a more suitable principle than that the size of the
spheres is measured by the length of the time, the order of the spheres is the
following, beginning with the highest.

The first and the highest of all is the sphere of the fixed stars, which contains
itself and everything, and is therefore immovable. It is unquestionably the place
of the universe, to which the motion and position of all the other heavenly bodies
are compared. Some people think that it also shifts in some way. A different
explanation of why this appears to be so will be adduced in my discussion of the
earth’s motion [I, 11].

[The sphere of the fixed stars] is followed by the first of the planets, Saturn,
which completes its circuit in 30 years. After Saturn, Jupiter accomplishes its
revolution in 12 years. Then Mars revolves in 2 years. The annual revolution takes
the series’ fourth place, which contains the earth, as I said [earlier in I, 10],
together with the lunar sphere as an epicycle. In the fifth place Venus returns
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in 9 months. Lastly, the sixth place is held by Mercury, which revolves in
a period of 80 days.

At rest, however, in the middle of everything is the sun. For in this most
beautiful temple, who would place this lamp in another or better position than
that from which it can light up the whole thing at the same time ? For, the sun is
not inappropriately called by some people the lantern of the universe, its mind
by others, and its ruler by still others. [Hermes] the Thrice Greatest labels it
a visible god, and Sophocles’ Electra, the all-seeing. Thus indeed, as though
seated on a royal throne, the sun governs the family of planets revolving around
it. Moreover, the earth is not deprived of the moon’s attendance. On the contrary,
as Aristotle says in a work on animals, the moon has the closest kinship with the
earth. Meanwhile the earth has intercourse with the sun, and is impregnated
for its yearly parturition.

In this arrangement, therefore, we discover a marvelous symmetry of the uni-
verse, and an established harmonious linkage between the motion of the spheres
and their size, such as can be found in no other way. For this permits a not inatten-
tive student to perceive why the forward and backward arcs appear greater in
Jupiter than in Saturn and smaller than in Mars, and on the other hand greater
in Venus than in Mercury. This reversal in direction appears more frequently
in Saturn than in Jupiter, and also more rarely in Mars and Venus than in Mercury.
Moreover, when Saturn, Jupiter, and Mars rise at sunset, they are nearer to the
earth than when they set in the evening or appear at a later hour. But Mars in
particular, when it shines all night, seems to equal Jupiter in size, being distin-
guished only by its reddish color. Yet in the other configurations it is found barely
among the stars of the second magnitude, being recognized by those who track it
with assiduous observations. All these phenomena proceed from the same cause,
which is in the earth’s motion.

Yet none of these phenomena appears in the fixed stars. This proves their
immense height, which makes even the sphere of the annual motion, or its reflec-
tion, vanish from before our eyes. For, every visible object has some measure of
distance beyond which it is no longer seen, as is demonstrated in optics. From
Saturn, the highest of the planets, to the sphere of the fixed stars there is an
additional gap of the largest size. This is shown by the twinkling lights of the
stars. By this token in particular they are distinguished from the planets, for
there had to be a very great difference between what moves and what does not
move. So vast, without any question, is the divine handiwork of the most excellent

Almighty.

PROOF OF THE EARTH’S TRIPLE MOTION Chapter 11

In so many and such important ways, then, do the planets bear witness to the
earth’s mobility. I shall now give a summary of this motion, insofar as the phenom-
ena are explained by it as a principle. As a whole, it must be admitted to be
a threefold motion.

The first motion, named nuchthemeron by the Greeks, as I said [I, 4], is the ro-
tation which is the characteristic of a day plus a night. This turns around the earth’s
axis from west to east, just as the universe is deemed to be carried in the opposite
direction. It describes the equator, which some people call the “circle of equal
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days™, in imitation of the designation used by the Greeks, whose term for it is
1semerinos.

The second is the yearly motion of the center, which traces the ecliptic around
the sun. Its direction is likewise from west to east, that is, in the order of the zo-
diacal signs. It travels between Venus and Mars, as I mentioned [I, 10], together
with its associates. Because of it, the sun seems to move through the zodiac
in a similar motion. Thus, for example, when the earth’s center is passing through
the Goat, the sun appears to be traversing the Crab; with the earth in the
Water Bearer, the sun seems to be in the Lion, and so on, as I remarked.

To this circle, which goes through the middle of the signs, and to its plane,
the equator and the earth’s axis must be understood to have a variable inclination.
For if they stayed at a constant angle, and were affected exclusively by the motion
of the center, no inequality of days and nights would be observed. On the contrary,
it would always be either the longest or shortest day or the day of equal daylight
and darkness, or summer or winter, or whatever the character of the season, it
would remain identical and unchanged.

The third motion in inclination is consequently required. This also is a yearly
revolution, but it occurs in the reverse order of the signs, that is, in the direction
opposite to that of the motion of the center. These two motions are opposite in
direction and nearly equal in period. The result is that the earth’s axis and equator,
the largest of the parallels of latitude on it, face almost the same portion of the
heavens, just as if they remained motionless. Meanwhile the sun seems to move
through the obliquity of the ecliptic with the motion of the earth’s center, as
though this were the center of the universe. Only remember that, in relation to
the sphere of the fixed stars, the distance between the sun and the earth vanishes
from our sight forthwith.

Since these are matters which crave to be set before our eyes rather than spoken
of, let us describe a circle ABCD, which the annual revolution of the earth’s
center has traced in the plane of the ecliptic. Near its center let the sun be E.
I shall divide this circle into four parts by drawing the diameters AEC and BED.
Let A represent the first point of the Crab, B of the Balance, C of the Goat, and D
of the Ram. Now let us assume that the earth’s center is originally at 4. About 4
I shall draw the terrestrial equator FGHI. This is not in the same plane [as the
ecliptic], except that the diameter GAI is the intersection of the circles, I mean,
of the equator and the ecliptic. Draw also the diameter FAH perpendicular to GAI,
F being the limit of the [equator’s] greatest inclination to the south, and H to
the north. Under the conditions thus set forth, the earth’s inhabitants will see
the sun near the center E undergo the winter solstice in the Goat. This occurs
because the greatest northward inclination, H, is turned toward the sun. For,
the inclination of the equator to the line AE, through the agency of the daily rota-
tion, traces the winter solstice parallel to the equator at an interval subtended by
EAH, the angle of the obliquity.

Now let the earth’s center start out in the order of the signs, and let F, the
limit of masimum inclination, travel along an equal arc in the reverse order of
the signs, until at B both have traversed a quadrant of their circles. In the interim
the angle EAI always remains equal to AEB, on account of the equality of their
revolutions; and the diameters always stay parallel to each other, FAH to FBH,
and GAIto GBI, and the equator to the equator. In the immensity of the heavens,
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for the reason already frequently mentioned, the same phenomena appear. There-
fore from B, the first point of the Balance, E will seem to be in the Ram.
The intersection of the circles will coincide with the single line GBIE, from which
[the plane of the axis] will not be permitted by the daily rotation to deviate. On
the contrary, the [axis’] inclination will lie entirely in the lateral plane. Accordingly
the sun will be seen in the spring equinox. Let the earth’s center proceed under
the assumed conditions, and when it has completed a semicircle at C, the sun
will appear to enter the Crab. But F, the southernmost inclination of the equator,
will be turned toward the sun. This will be made to appear in the north, undergoing
the summer solstice as measured by the angle of the obliquity, ECF. Again,
when F turns away in the third quadrant of the circle, the intersection GI will
once more fall on the line ED. From here the sun will be seen in the Balance
undergoing the auturnn equinox. Then as H by the same process gradually faces
the sun, it will bring about a repetition of the initial situation, with which I began
my survey.

Alternatively, let AEC be in the same way a diameter of the plane under discus-
sion [the ecliptic] as well as the intersection of that plane with a circle perpendicular
thereto. On AEC, around A4 and C, that is, in the Crab and the Goat, draw a circle
of the earth in each case through the poles. Let this [meridian] be DGFI, the
earth’s axis DF, the north pole D, the south pole F, and GI the diameter of the
equator. Now when F is turned toward the sun, which is near E, the equator’s
northward inclination being measured by the angle IAE, then the axial rotation
will describe, parallel to the equator and to the south of it, at a distance LI and with
diameter KL, the tropic of Capricorn as seen in the sun. Or, to speak more accu-
rately, the axial rotation, as viewed from AE, generates a conic surface, having its
vertex in the center of the earth, and its base in a circle parallel to the equator.
Also at the opposite point, C, everything works out in like manner, but is reversed.
It is clear therefore how the two motions, I mean, the motion of the center and
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the motion in inclination, by their combined effect make the earth’s axis remain
in the same direction and in very much the same position, and make all these
phenomena appear as though they were motions of the sun.

I said, however, that the annual revolutions of the center and of inclination
are nearly equal. For if they were exactly equal, the equinoctial and solstitial
points as well as the entire obliquity of the ecliptic would have to show no shift
at all with reference to the sphere of the fixed stars. But since there is a slight
variation, it was discovered only as it grew larger with the passage of time. From
Ptolemy to us the precession of the equinoxes amounts to almost 21°. For this
reason some people believed that the sphere of the fixed stars also moves, and
accordingly they adopted a surmounsing ninth sphere. This having proved inade-
quate, more recent writers now add on a tenth sphere. Yet they do not in the least
attain their goal, which I hope to reach by the earth’s motion. This I shall use as
a principle and hypothesis in the demonstration of the other [motions].

[Here Copernicus originally planned to include a little more than two handwritten pages
which he later deleted from his autograph. This deleted material, which was not printed
in the first four editions of the Rewvolutions (1543, 1566, 1617, 1854), but was incorporated in those
published after the recovery of Copernicus’ autograph (1873, 1949, 1972), reads as follows].

The motion of the sun and moon can be demonstrated, I admit, also with an earth that is sta-
tionary. This is, however, less suitable for the remaining planets. Philolaus believed in the earth’s
motion for these and similar reasons. This is plausible because Aristarchus of Samos too held the
same view according to some people, who were not motivated by the argumentation put forward
by Aristotle and rejected by him [Heavens, II, 13-14]. But only a keen mind and persevering
study could understand these subjects. They were therefore unfamiliar to most philosophers at
that time, and Plato does not conceal the fact that there were then only a few who mastered the
theory of the heavenly motions. Even if these were known to Philolaus or any Pythagorean, they
nevertheless were probably not transmitted to posterity. For it was the Pythagoreans’ practice not
to commit the secrets of philosophy to writing nor divulge them to everybody, but to entrust
them only to faithful friends and kinsmen, and pass them on from hand to hand. As evidence
of this custom there is extant a letter from Lysis to Hipparchus. Because of its remarkable opin-
ions and in order to make clear what value was attached to philosophy among themselves, I have
decided to insert it here and to end this first Book with it. This, then, is a copy of the letter, which
I translate from Greek as follows.

From Lysis to Hipparchus, greetings.

I would never have believed that after Pythagoras’ death his followers’ brotherhood would be
dissolved. But now that we have unexpectedly been scattered hither and yon, as if our ship had
been wrecked, it is still an act of piety to recall his godlike teachings and refrain from communicating
the treasures of philosophy to those who have not even dreamed about the purification of the soul.
For it is indecent to divulge to everybody what we achieved with such great effort, just as the
Eleusinian goddesses’ secrets may not be revealed to the uninitiated. The perpetrators of either
of these misdeeds would be condemned as equally wicked and impious. On the other hand, it is
worth considering how much time we spent wiping out the stains which clung to our hearts until
we became receptive to his teachings after the course of five years. Dyers, having cleaned their
fabrics, then apply their tincture with a mordant in order to fix the color indissolubly and prevent
it from fading away easily thereafter. That godlike man prepared the lovers of philosophy in the
same way, to avoid being disappointed in the hope he had conceived for the talents of any one of
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them. He did not sell his precepts for a price, and the snares with which young minds are entangled
by many of the sophists were not set out by him because they are devoid of value. On the contrary,
divine and human doctrines were promulgated by him.

Certain imitators of his teaching, however, perform at great length and out loud. Their instruc-~
tion of the young follows a confused and improper procedure, thereby making their auditors
impertinent and brash. For they mix disorderly and tainted morals with philosophy’s lofty precepts.
The result is like pouring pure fresh water into a deep well full of muck, since the muck is stirred
up and the water is wasted. This is what happens to those who teach and are taught in this manner.
For thick, dark woods obstruct the minds and hearts of those who were not correctly initiated,
and completely damage the gentleness of their spirit and their reasonableness. These woods are
infested with all sorts of vices, which by flourishing impede thoughtand prevent it from developing
in any way.

As breeders of the interlopers I shall name principally self-indulgence and greed, both of which
are extremely fertile. For, self-indulgence gives rise to incest, drunkenness, rape, unnatural
pleasures, and certain violent impulses which lead as far as death and destruction. In fact, passion
has inflamed some of these persons to so high a pitch that they spared neither their mothers nor
their daughters. It has even carried them into conflict with their laws, country, government, and
rulers. It has laid snares such that it brought them bound hand and foot to the final punishment.
Greed, on the other hand, generates mayhem, murder, temple-robbery, poisoning, and other
offspring of that sort. The lairs in those woods, where these urges lurk, must therefore be extirpated
by fire and sword with all our might. When we have found the natural reason freed from these
lusts, we shall then implant in it a most excellent and fruitful crop.

You too, Hipparchus, learned these rules with no small zeal. But, my good man, little did you
heed them after you had tasted Sicilian luxury, for the sake of which you should have abandoned
nothing. Many people even say that you are teaching philosophy publicly. This practice was
forbidden by Pythagoras, who willed his notes to his daughter Damo with an order not to turn them
over to anybody outside the family. Although she could have sold them for a lot of money, she
refused to do so, considering poverty and her father’s commands more precious than gold. They
also say that when Damo died, she left the same obligation to her own daughter Bitale. Yet we of
the male sex disobey our teacher and violate our oath. If, then, you mend your ways, I cherish you.
But if you do not, as far as I am concerned, you are dead.

[The foregoing letter, the true nature of which was not suspected by Copemicus, ended
Book I as originally planned. According to that plan, Book II began immediately after the letter
with some introductory material, which was subsequently deleted. This deleted material, which
was not printed in the first four editions of the Revolutions, but was included in those published
after the recovery of Copemicus’ autograph, reads as follows].

For what I have undertaken to do, those propositions of natural philosophy which seemed
indispensable as principles and hypotheses, namely, that the universe is spherical, immense,
and similar to the infinite, and that the sphere of the fixed stars as the container of everything is
stationary, whereas all the other heavenly bodies have a circular motion, have been briefly reviewed.
I have also assumed that the earth moves in certain revolutions, on which, as the cornerstone,
I strive to erect the entire science of the stars.

[The rest of the material deleted here in the autograph was printed in the first four editions of
the Revolutions as the following beginning of I, 12].

The proofs which I shall use in almost the entire work involve straight lines
and arcs in plane and spherical triangles. Although much information about these
topics is already available in Euclid’s Elements, nevertheless that treatise does not
contain the answer to what is the principal question here, how the sides can be
obtained from the angles, and the angles from the sides.

[As the heading of 1, 12, the first edition introduced “The Length of Straight Lines in a Circle”.
This caption, for which there is no direct warrant in the autograph, was repeated in the next three
editions of the Revolutions.
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In the autograph, on the other hand, the material preceding the first chapter of Book II,
as originally planned, continued as follows].

The measure of a subtended straight line is not the angle, nor is the angle measured by the line.
On the contrary, the measure is the arc. Hence a method has been discovered whereby the lines
subtending any arc are known. With the help of these lines, the arc corresponding to the angle
may be obtained; and conversely the straight line intercepted by the angle may be obtained through
the arc. It therefore seems not inappropriate for me to discuss these lines in the following Book, and
also the sides and angles of both plane and spherical triangles, which were treated by Ptolemy
in scattered examples. I should like to finish these topics once and for all here, thereby clarifying
what I have to say later on.

STRAIGHT LINES SUBTENDED IN A CIRCLE  Chapter 12
[Book II, Chapter 1, according to Copernicus’ original plan]

In accordance with the common practice of mathematicians, I have divided
the circle into 360°. With regard to the diameter, however, [a division into]
120 units was adopted by the ancients [for example, Ptolemy, Syntaxis, I, 10].
But later writers wanted to avoid the complication of fractions in multiplying
and dividing the numbers for the lines [subtended in a circle], most of
which are incommensurable as lengths, and often even when squared. Some
of these later writers resorted to 1,200,000 units; others, 2,000,000; and still
others established some other sensible diameter, after the Hindu symbols for
numbers came into use. This numerical notation certainly surpasses every other,
whether Greek or Latin, in lending itself to computations with exceptional speed.
For this reason I too have accepted 200,000 units in a diameter as sufficient to
be able to exclude any obvious error. For where quantities are not related to each
other as one integer to another, it is enough to obtain an approximation. I shall
explain this [subject] in six theorems and one problem, following Ptolemy closely.

THEOREM I

The diameter of a circle being given, the sides of the triangle, square, pentagon,
hexagon, and decagon circumscribed by the circle are also given.

For, the radius, as half of the diameter, is equal to the side of the hexagon.
But the square on the side of the triangle is three times, and the square on the
side of the square is twice, the square on the side of the hexagon, as is demonstrated
in Euclid’s Elements. Therefore the side of the hexagon is given as 100,000 units
long; the side of the square as 141,422; and the side of. the triangle as 173,205.

Now let the side of the hexagon be AB. Let it be divided at the point C in
mean and extreme ratio, in accordance with Euclid, Book II, Problem 1, or VI, 10.
Let the greater segment be CB, and let it be extended an equal length, BD. Then
the whole line ABD also will be divided in extreme and mean ratio. As the smaller
segment, the extension BD is the side of the decagon inscribed in the circle in
which AB is the side of the hexagon, as is clear from Euclid, XIII, 5 and 9.

Now BD will be obtained as follows. Bisect AB at E. From Euclid, XIII, 3, it
is clear that the square of EBD equals five times the square of EB. But EB is
given as 50,000 units long. Five times its square gives EBD as 111,803 units long.
If EB’s 50,000 are subtracted, the remainder is BD’s 61,803 units, the side of the
decagon which we were looking for.
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Furthermore, the side of the pentagon, the square on which is equal to the
sum of the squares on the sides of the hexagon and decagon, is given as 117,557
units.

Therefore, when the diameter of a circle is given, the sides of the triangle,
square, pentagon, hexagon, and decagon which can be inscribed in the circle are
given. Q.E.D.

COROLLARY

Consequently it is clear that when the chord subtending any arc is given, the
chord subtending the rest of the semicircle is also given.

The angle inscribed in a semicircle is a right angle. Now in right triangles,
the square on the diameter, that is, the side subtending the right angle, is equal
to the squares on the sides forming the right angle. Now the side of the decagon,
which subtends an arc of 36°, has been shown [Theorem I to consist of 61,803
units, of which the diameter contains 200,000. Hence the chord subtending the
remaining 144° of the semicircle is also given as consisting of 190,211 units.
And from the side of the pentagon which, with its 117,557 units of the diameter,
subtends an arc of 72°, the straight line subtending the remaining 108° of the
semicircle is obtained as 161,803 units.

THEOREM II, PRELIMINARY [TO THEOREM III]

If a quadrilateral is inscribed in a circle, the rectangular product of the diagonals
is equal to the rectangular products of the opposite sides.

For let the quadrilateral inscribed in a circle be ABCD. I say that the product
of the diagonals AC XDB is equal to the products of ABXDC and 4D xBC.
For let us make the angle ABE equal to the angle at CBD. Then the whole angle
ABD is equal to the whole angle EBC, angle EBD being taken as common to
both. Moreover, the angles at ACB and BDA are equal to each other, since they
intercept the same segment of the circle. Therefore the two similar triangles
[BCE and BDA] will have their sides proportional, BC : BD = EC : AD, and
the product of EC X BD is equal to the product of BC XAD. But also the triangles
ABE and CBD are similar, because the angles at ABE and CBD are equal by con-
struction, and the angles BAC and BDC are equal because they intercept the same
arc of the circle. Consequently, as before, AB : BD = AE : CD, and the product
of AB X CD is equal to the product of A4E xBD. But it has already been shown
that the product of AD X BC is equal to the product of BD X EC. By addition,
then, the product of BD XAC is equal to the products of AD X BC and AB XCD.
This is what it was useful to prove.

THEOREM III

For it follows from the foregoing that if the straight lines subtending unequal
arcs in a semicircle are given, the chord subtending the arc by which the larger
arc exceeds the smaller is also given.

Thus in the semicircle ABCD, with diameter AD, let the chords subtending
unequal arcs be AB and AC. What we wish to find is the chord subtending BC.
From what was said above [Theorem I, Corollary], the chords BD and CD, sub-
tending the arcs remaining in the semicircle, are given. As a result, in the semicir-
cle the quadrilateral ABCD is formed. Its diagonals AC and BD are given, to-
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gether with the three sides, AB, AD, and CD. In this quadrilateral, as has been
demonstrated already [Theorem II], the product of ACXBD is equal to the
product of ABXCD and AD X BC. Therefore, if the product ABXCD is sub-
tracted from the product ACXBD, the remainder is the product 4D XBC.
Hence, if we divide by AD, so far as that is possible, we obtain a number for
the chord BC, which we were seeking.

From the foregoing, the sides of the pentagon and hexagon, for example, are
given. Consequently the chord subtending 12°, the difference between them
[72°-60°], is given in this way as 20,905 units of the diameter.

THEOREM 1V

If the chord subtending any arc is given, the chord subtending half of the arc
is also given.

Let us describe the circle ABC, and let its diameter be AC. Let BC be the
given arc with its subtending chord. From the center E, let the line EF intersect
BC at right angles. Then, according to Euclid III, 3, EF will bisect BC at F,
and when EF is extended, it will bisect the arc at D. Also draw the chords AB
and BD. ABC and EFC are right triangles. Moreover, since they have angle ECF
in common, they are similar triangles. Therefore, just as CF is half of BFC, so
EF is half of AB. But AB, which subtends the remaining arc of the semicircle,
is given [Theorem I, Corollary]. Hence EF is likewise given, and also DF, as
the rest of the half diameter. Let the diameter be completed as DEG. Join BG.
Then in the triangle BDG, from the right angle B the perpendicular BF falls on
the base. Consequently the product of GD X DF is equal to the square of BD.
Accordingly BD is given in length as subtending half of the arc BDC.

Since the chord subtending 12° has already been given [Theorem III], the
chord subtending 6° is also given as 10,467 units; 3°, as 5,235 units; 1 1/,°, as
2,618 units; and 3/,° as 1,309 units.

THEOREM V

Furthermore, when the chords subtending two arcs are given, the chord
subtending the whole arc consisting of the two arcs is also given.

In a circle let the given chords be AB and BC. I say that the chord subtending
the whole arc ABC is also given. For, draw the diameters AFD and BFE, and
also the straight lines BD and CE. These chords are given by what precedes
[Theorem I, Corollary], because AB and BC are given, and DE is equal to 4B.
Join CD, completing the quadrilateral BCDE. Its diagonals BD and CE, as well
as three of its sides, BC, DE, and BE, are given. The remaining side, CD, will also
be given by Theorem II. Therefore CA, as the chord subtending the rest of
the semicircle, is given as the chord subtending the whole arc ABC. This is
what we were looking for.

Then thus far the straight lines subtending 3°, 1 /,°, and 3/,° have been found.
With these intervals anyone can construct a table with very precise relationships.
But when [it comes to] advancing by [a whole] degree and adding one to another,
or by half a degree, or in some other way, there will be a not unfounded doubt
about the chords subtending these arcs, since we lack the graphical relationships
by which they would be demonstrated. Yet nothing prevents us from attaining
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this result by another method, without any perceptible error and by assuming
a number which is very slightly inaccurate. Ptolemy too [Syntaxis, I, 10] looked
for the chords subtending 1° and Y/,°, after reminding us first [of the following].

THEOREM VI

The ratio of a greater arc to a lesser arc is bigger than the ratio of the subtending
straight lines.

In a circle, let the two unequal arcs, AB and BC, be contiguous, and let BC
be the greater arc. I say that the ratio BC : AB is bigger than the ratio BC : AB
of the chords forming the angle B. Let it be bisected by the line BD. Join 4C.
Let it intersect BD in the point E. Likewise join AD and CD. They are equal
because they subtend equal arcs. Now in the triangle ABC, the line which bisects
the angle also intersects AC at E. Hence the ratio of the base’s segments EC : AE
is equal to the ratio BC : AB. Since BC is greater than AB, EC also is greater
than EA. Erect DF perpendicular to AC. DF will bisect AC at the point F, which
must lie in the greater segment, EC. In every triangle the greater angle is opposite
the greater side. Hence in triangle DEF, the side DE is greater than DF. AD
is even greater than DE. Therefore an arc drawn with D as center, and with DE
as radius, will intersect AD, and pass beyond DF. Let the arc intersect AD in H,
and let it be extended to the straight line DFI. Then the sector EDI is greater
than the triangle EDF. But the triangle DEA is greater than the sector DEH.
Therefore the ratio of triangle DEF to triangle DEA is smaller than the ratio
of sector DEI to sector DEH. But sectors are proportional to their arcs or central
angles, whereas triangles which have the same vertex are proportional to their
bases. Consequently the ratio of the angles EDF : ADE is bigger than the ratio
of the bases EF : AE. Hence, by addition, the ratio of the angles FDA : ADE
is bigger than the ratio AF : AE, and in the same way CDA : ADE is bigger than
AC : AE. And by subtraction, CDE : EDA also is bigger than CE : EA. However,
the angles CDE and EDA are to each other as the arcs CB : AB, but the bases
CE : AE are as the chords BC : AB. Therefore the ratio of the arcs CB : AB
is bigger than the ratio of the chords BC : AB. Q.E.D.

PROBLEM

An arc is always greater than the straight line subtending it, while a straight
line is the shortest of the lines having the same end points. Yet this inequality,
[in descending] from greater to lesser portions of a circle, approaches equality,
so that in the end the straight and circular lines are extinguished simultaneously
at their last point of contact on the circle. Prior to that, consequently, they must
differ from each other by no perceptible distinction.

For example, let arc AB be 3°, and arc AC 1 1/,°. The chord subtending 4B
has been shown [Theorem IV] to consist of 5235 units, of which the diameter is
assumed to have 200,000, and the chord subtending AC has 2618 units. The arc AB
is double the arc AC, whereas the chord AB is less than double the chord AC,
which exceeds 2,617 by only one unit. But if we take AB as 1 */,° and AC as 3/,°,
we shall have chord AB as 2618 units, and AC as 1309 units. Although AC ought
to be greater than half of the chord 4B, yet it seems not to differ from half, the
ratios of the arcs and straight lines now appearing to be the same. Hence we see
that we have reached the level where the difference between the straight and circu-
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lar lines becomes absolutely imperceptible, as though they had merged into a single
line. Hence I have no hesitation in fitting the 1309 units of 3/,° in the same pro-
portion to the chords subtending 1° and the other fractional parts thereof. Thus,
by adding Y/,° to 3/,° we establish the chord subtending 1° as 1745 units; Y/,°
as 872 Y/, units; and 1/;°, as approximately 582 units.

Yet I believe that it is enough if I put in the Table only half-lines subtending
double the arcs. By this shortcut I shall compress in a quadrant what formerly had
to be spread out over a semicircle. The main reason for doing so is that in demon-
strations and calculations half-lines are used more frequently than wnole lines.
I have drawn up a Table which progresses by sixths of a degree. It has three
columns. In the first column are the degrees, or parts, of a circumference, and
sixths of a degree. The second column contains the numerical value for the half-line
subtending double the arc. The third column shows, for each degree, the difference
intervening between these numerical values. These differences permit the inter-
polation of the proportional amounts corresponding to individual minutes of de-
grees. The Table, then, is as follows.
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Arcs Half-Ch‘?rds ences
Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
0 10 291 291
0 20 582
0 30 873
0 40 1163
0 50 1454
1 0 1745
1 10 2036
1 20 2327
1 30 2617
1 40 2908
1 50 3199
2 0 3490
2 10 3781
2 20 4071
2 30 4362
2 40 4653
2 50 4943 290
3 0 5234
3 10 5524
3 20 5814
3 30 6105
3 40 6395
3 50 6685
4 0 6975
4 10 7265
4 20 7555
4 30 7845
4 40 8135
4 50 8425
5 0 8715
5 10 9005
5 20 9295
5 30 9585
5 40 9874
5 50 10164 289
6 0 10453

Differ-
Arcs Half-Cho'rds ences
Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
6 10 10742 289
6 20 11031
6 30 11320
6 40 11609
6 50 11898
7 0 12187
7 10 12476
7 20 12764 288
7 30 13053
7 40 13341
7 50 13629
8 0 13917
8 10 14205
8 20 14493
8 30 14781
8 40 15069
8 50 15356 287
9 0 15643
9 10 15931
9 20 16218
9 30 16505
9 40 16792
9 50 17078
10 0 17365
10 10 17651 286
10 20 17937
10 30 18223
10 40 18509
10 50 18795
11 0 19081
11 10 19366 285
11 20 19652
11 30 19937
11 40 20222
11 50 20507
12 0 20791

32

10

15

20

25

30

36

40



10

15

20

25

35

40

BOOK I CH. 12

TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Half-Chords | ences
Arcs Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
12 10 21076 284
12 20 21360
12 30 21644
12 40 21928
12 50 22212
13 0 22495 283
13 10 22778
13 20 23062
13 30 23344
13 40 23627
13 | 50 23910 282
14 0 24192
14 10 24474
14 20 24756
14 30 25038 281
14 40 25319
14 50 25601
15 0 25882
15 10 26163
15 20 26443 280
15 30 26724
15 40 27004
15 50 27284
16 0 27564 279
16 10 27843
16 20 28122
16 30 28401
16 40 28680
16 50 28959 278
17 0 29237
17 10 29515
17 20 29793
17 30 30071 277
17 40 30348
17 50 30625
18 0 30902

Differ-
Half-Chords | ences
Arcs Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
18 | 10 31178 276
18 | 20 31454
18 | 30 31730
18 40 32006
18 | 50 32282 275
19 0 32557
16 10 32832
19 20 33106
19 © 30 33381 274
19 40 33655
19 50 33929
20 0 34202
20 | 10 34475 273
20 | 20 34748
20 | 30 35021
20 | 40 35293 272
20 | 50 35565
21 0 35837
21 10 36108 27
21 20 36379
21 30 36650
21 40 36920 270
21 50 37190
22 0 37460
22 10 37730 269
22 | 20 37999
22 | 30 38268
22 | 40 38537 268
22 | 50 38805
23 0 39073
23 10 39341 267
23 | 20 39608
23 | 30 39875
23 | 40 40141 266
23 | 50 40408
24 0 40674
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Half-Chords | ences
Arcs Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
24 10 40939 265
24 20 41204
24 30 41469
24 40 41734 264
24 50 41998
25 0 42262
25 10 42525 263
25 20 42788
25 30 43051
25 40 43313 262
25 50 43575
26 0 43837
26 10 44098 261
26 20 44359
26 30 44620 260
26 40 44880
26 50 45140
27 0 45399 259
27 10 45658
27 20 45916 258
27 30 46175
27 40 46433
27 50 46690 257
28 0 46947
28 10 47204 256
28 20 47460
28 30 47716 255
28 40 47971
28 50 48226
29 0 48481 254
29 10 48735
29 20 48989 253
29 30 49242
29 40 49495 252
29 50 49748
30 0 50000

Differ-
Half-Chords || ences
Arcs Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
30 10 50252 251
30 20 50503
30 30 50754 250
30 40 51004
30 50 51254
31 0 51504 249
31 10 51753
31 20 52002 248
31 30 52250
31 40 52498 247
31 50 52745
32 0 52992 246
32 10 53238
32 20 53484
32 30 53730 245
32 40 53975
32 50 54220 244
33 0 54464
33 10 54708 243
33 20 54951
33 30 55194 242
33 40 55436
33 50 55678 241
34 0 55919
34 10 56160 240
34 20 56400
34 30 56641 239
34 40 56880
34 50 57119 238
35 0 57358
35 10 57596
35 20 57833 237
35 30 58070
35 40 58307 236
35 50 58543
36 0 58779 235
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Arcs Half-Cho-rds ences
Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
36 10 59014 235
36 20 59248 234
36 30 59482
36 40 59716 233
36 50 59949
37 0 60181 232
37 10 60413
37 20 60645 231
37 30 60876
37 40 61107 230
37 50 61337
38 0 61566 229
38 10 61795
38 20 62024
38 30 62251 228
38 40 62479
38 50 62706 227
39 0 62932
39 10 63158 226
39 20 63383
39 30 63608 225
39 40 63832
39 50 64056 224
40 0 64279 223
40 10 64501 222
40 20 64723
40 30 64945 221
40 40 65166 220
40 50 65386
41 0 65606 219
41 10 65825
41 20 66044 218
41 30 66262
41 40 66480 217
41 50 66697
42 0 66913 216

Differ-
Arcs Half-Cho.rds ences
Subtending || for the
Double Fractions
Arcs of a
Degree | Minute Degree
42 10 67129 215
42 20 67344
42 30 67559 214
42 40 67773
42 50 67987 213
43 0 68200 212
43 10 68412
43 20 68624 211
43 30 68835
43 40 69046 210
43 50 69256
44 0 69466 209
44 10 69675
44 20 69883 208
44 30 70091 207
44 40 70298
44 50 70505 206
45 0 70711 205
45 10 70916
45 20 71121 204
45 30 71325
45 40 71529 203
45 50 71732 202
46 0 71934
46 10 72136 201
46 20 72337 200
46 30 72537
46 40 72737 199
46 50 72936
47 0 73135 198
47 10 73333 197
47 20 73531
47 30 73728 196
47 40 73924 195
47 50 74119
48 0 74314 194
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Half-Chords || ences
Ares | Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
48 10 74508 194
48 20 74702
48 30 74896
48 40 75088 192
48 50 75280 191
49 0 75471 190
49 10 75661
49 20 75851 189
49 30 76040
49 40 76229 188
49 50 76417 187
50 0 76604
50 10 76791 186
50 20 76977
50 30 77162 185
50 40 77341 184
50 50 77531
51 0 77715 183
51 10 77897 182
51 20 78079
51 30 78261 181
51 40 78442 180
51 50 78622
52 0 78801 179
52 10 78980 178
52 20 79158
52 30 79335 177
52 40 79512 176
52 50 79688
53 0 79864 175
55 | 10 80038 174
53 20 80212
53 30 80386 173
53 40 80558 172
53 50 80730
54 0 80902 171

Differ-
Arcs Half-Cho.rds ences
Subtending || for the
Double Fractions
Arcs of a
Degree | Minute Degree
54 10 81072 170
54 20 81242 169
54 30 81411
54 40 81580 168
54 50 81748 167
55 0 81915
55 10 82082 166
55 20 82248 165
55 30 82413 164
55 40 82577
55 50 82741 163
56 0 82904 162
56 10 83066
56 20 83228 161
56 30 83389 160
56 40 83549 159
56 50 83708
57 0 83867 158
57 10 84025 157
57 20 84182
57 30 84339 156
57 40 84495 155
57 50 84650
58 0 84805 154
58 10 84959 153
58 20 85112 152
58 30 85264
58 40 85415 151
58 50 85566 150
59 0 85717
59 10 85866 149
59 20 86015 148
59 30 86163 147
59 40 86310
59 50 86457 146
60 0 86602 145
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Arcs Half-Cho'rds ences
Subtending || for the
Double Fractions
Arcs of a
Degree | Minute Degree
60 10 86747 144
60 20 86892
60 30 87036 143
60 40 87178 142
60 50 87320
61 0 87462 141
61 10 87603 140
61 20 87743 139
61 30 87882
61 40 88020 138
61 50 88158 137
62 0 88295
62 | 10 88431 136
62 20 88566 135
62 30 88701 134
62 40 88835
62 50 88968 133
63 0 89101 132
63 10 89232 131
63 20 89363
63 30 89493 130
63 40 89622 129
63 50 89751 128
64 0 89879
64 10 90006 127
64 20 90133 126
64 30 90258
64 40 90383 125
64 50 90507 124
65 0 90631 123
65 10 90753 122
65 20 90875 121
65 30 90996
65 40 91116 120
65 50 91235 119
66 0 91354 118

Differ-
Arcs Half-Cho‘rds ences
Subtending || for the
Double Fractions
Arcs of a
Degree | Minute Degree
66 10 91472 118
66 20 91590 117
66 30 91706 116
66 40 91822 115
66 50 91936 114
67 0 92050 113
67 10 92164
67 20 92276 112
67 30 92388 111
67 40 92499 110
67 50 92609 109
68 0 92718
68 10 92827 108
68 20 92935 107
68 30 93042 106
68 40 93148 105
68 50 93253
69 0 93358 104
69 10 93462 103
69 20 93565 102
69 30 93667
69 40 93769 101
69 50 93870 100
70 0 93969 99
70 10 94068 98
70 20 94167
70 30 94264 97
70 40 94361 96
70 50 94457 95
71 0 94552 94
71 10 94646 93
71 20 94739
71 30 94832 92
71 40 94924 91
71 50 95015 90
72 0 95105
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE

Differ-
Half-Chords | ences
Ares Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
72 10 95195 89
72 20 95284 88
72 30 95372 87
72 40 95459 86
72 50 95545 85
73 1] 95630
73 10 95715 84
73 20 95799 83
73 30 95882 82
73 40 95964 81
73 50 96045
74 0 96126 80
74 10 96206 79
74 20 96285 78
74 30 96363 71
74 40 96440
74 50 96517 76
75 0 96592 5
75 10 96667 74
75 20 96742 73
75 30 96815 72
75 40 96887
75 50 96959 71
76 1] 97030 70
76 10 97099 69
76 20 97169 68
76 30 97237
76 40 97304 67
76 50 97371 66
71 1] 97437 65
71 10 97502 64
77 20 97566 63
7 30 97630
7 40 97692 62
77 50 97754 61
78 0 97815 60

Differ-
Arcs Half-Cho.rds ences
Subtending | for the
Double Fractions
Arcs of a
Degree | Minute Degree
78 10 97875 59
78 20 97934 58
78 30 97992
78 40 98050 57
78 50 98107 56
79 1] 98163 55
79 10 98218 54
79 20 98272
79 30 98325 53
79 40 98378 52
79 50 98430 51
80 1] 98481 50
80 10 98531 49
80 20 98580
80 30 98629 48
80 40 98676 47
80 50 98723 46
81 0 98769 45
81 10 98814 4
81 20 98858 43
81 | 30 98902 42
81 40 98944
81 50 98986 41
82 1] 99027 40
82 10 99067 39
82 20 99106 38
82 30 99144
82 40 99182 37
82 50 99219 36
83 1] 99255 35
83 10 99290 34
83 20 99324 33
83 30 99357
83 40 99389 32
83 50 99421 31
84 0 99452 30
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TABLE OF THE STRAIGHT LINES SUBTENDED IN A CIRCLE
Differ- Differ-
Arcs Half-Cho.rds ences Arcs Half-Cho'rds ences
Subtending || for the Subtending {| for the
Double Fractions Double Fractions
5 Arcs of a Arcs of a
Degree | Minute Degree Degree | Minute Degree
84 10 99482 29 87 10 99878 14
84 20 99511 28 87 20 99892 13
84 30 99539 27 87 30 99905 12
10 84 40 99567 87 40 99917
84 50 99594 26 87 50 99928 11
85 0 99620 25 88 0 99939 10
85 10 99644 24 88 10 99949 9
85 20 99668 23 88 20 99958 8
15 85 30 99692 22 88 30 99966 7
85 40 99714 88 40 99973 6
85 50 99736 21 88 50 99979
86 0 99756 20 89 0 99985 5
86 10 99776 19 89 10 99989 4
20 86 20 99795 18 89 20 99993 3
86 30 99813 89 30 99996 2
86 40 99830 17 89 40 99998 1
86 50 99847 16 89 50 99999 0
87 0 99863 15 90 0 100000 0
|
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THE SIDES AND ANGLES OF PLANE Chapter 13
RECTILINEAR TRIANGLES

[Book II, Chapter 2, according to Copernicus’ original plan]

I

If the angles of a triangle are given, the sides are given.

I say, let there be a triangle ABC. Circumscribe a circle around it, in accordance
with Euclid, Book IV, Problem 5. Then the arcs AB, BC, and CA will likewise
be given, according to the system in which 360° are equal to two right angles.
But when the arcs are given, the sides of the triangle inscribed in the circle are
also given as chords, in the Table set forth above, in units whereof the diameter
is assumed to have 200,000.

II

But if an angle and two sides of a triangle are given, the remaining side and the
other angles will also be known.

For, the given sides are either equal or unequal, while the given angle is either
right or acute or obtuse, and the given sides either include or do not include the
given angle.

ITA

First, in the triangle ABC let the two given sides, AB and AC, which include
the given angle 4, be equal. Then the other angles, which are at the base BC,
since they are equal, are also given as halves of the remainder when A4 is subtracted
from two right angles. And if originally an angle at the base is given, its equal
is thereupon given; and from these, the remainder of two right angles is given.
But when the angles of a triangle are given, the sides are given, and the base BC
is given by the Table, in units whereof AB or AC as radius has 100,000, or the
diameter 200,000.

IIB

But if BAC is a right angle included by sides which are given, the same result
will follow.

It is quite obvious that the squares on AB and AC are equal to the square on
the base BC. Therefore BC is given in length, and so the sides are given in relation
to one another. But the segment of the circle which encloses the right triangle is
a semicircle, whose diameter is the base BC. Therefore, in units whereof BC
has 200,000, AB and AC will be given as sides opposite the remaining angles
B and C. Their place in the Table will accordingly make them known in degrees,
whereof 180 are equal to two right angles. The same result will follow if BC is
given with either of the two sides which include the right angle. This is now quite
obvious, in my judgement.

IIC

Now let the given angle ABC be acute, and let it also be included by the given
sides AB and BC. From the point A drop a perpendicular to BC, extended if
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necessary, according as the perpendicular falls inside or outside the triangle. Let
the perpendicular be AD. By means of it two right triangles ABD and ADC are
established. In ABD the angles are given, because D is a right angle, and B is
given by hypothesis. Therefore AD and BD, as sides opposite the angles 4 and
B, are given by the Table in units whereof AB, as the diameter of a circle, has
200,000. And on the same scale on which AB was given in length, AD and BD
are given in similar units, and so also is CD, by which BC exceeds BD. In the
right triangle ADC, therefore, the sides AD and CD being given, the required
side AC and the angle ACD are likewise given by the preceding proof.

IID

The result will not be different if the angle B is obtuse. For from the point 4,
a perpendicular AD, dropped on the straight line BC extended, makes a triangle
ABD, whose angles are given. For, ABD is given as the supplementary angle of
ABC, and D is a right angle. Therefore BD and AD are given in units whereof AB
is 200,000. And since BA and BC have a given ratio to each other, therefore BC
is given also in the same units as BD, and so is the whole of CBD. Likewise in the
right triangle ADC, therefore, since the two sides AD and CD are given, the re-
quired AC also is given, as well as the angle BAC, with the remainder ACB,
which were required.

ITE

Now let either one of the given sides be opposite the given angle B. Let [this
opposite side] be AC and [the other given side] AB. Then AC is given by the Table
in units whereof the diameter of the circle circumscribed around the triangle
ABC has 200,000. Moreover, in accordance with the given ratio of AC to AB,
AB is given in similar units. And by the Table the angle at ACB is given, together
with the remaining angle BAC. Through the latter, the chord CB also is given.
When this ratio is given, [the length of the sides] is given in any units whatsoever.

III

If all the sides of a triangle are given, the angles are given.

In the case of the equilateral triangle, the fact that each of its angles is one-
third of two right angles is too well known to be mentioned.

Also in the case of the isosceles triangle the situation is clear. For, the equal
sides are to the third side as halves of the diameter are to the chord subtending
the arc. Through the arc, the angle included by the equal sides is given by the
Table in units whereof a central angle of 360° is equal to four right angles. Then
the other angles, which are at the base, are also given as halves [of the remainder
when the angle included by the equal sides is subtracted] from two right an-
gles.

It therefore now remains to give the proof for scalene triangles too. These
will similarly be divided into right triangles. Then let ABC be a scalene triangle
of given sides. On the longest side, for instance, BC, drop the perpendicular AD.
But the square of 4B, which is opposite an acute angle, as we are told by Euclid,
II, 13, is less than the squares on the other two sides, the difference being twice
the product BC XCD. For, C must be an acute angle; otherwise AB would be,
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contrary to the hypothesis, the longest side, as may be inferred from Euclid, I, 17,
and the next two theorems. Therefore BD and DC are given; and in a situation
to which we have already frequently returned, ABD and ADC will be right triangles
of given sides and angles. From these, the required angles of triangle ABC are
also known.

Alternatively, the next to the last theorem in Euclid, III, will demonstrate
the same result, perhaps more conveniently. Let the shortest side be BC. With C as
center, and with BC as radius, let us describe a circle which will intersect both of
the remaining sides or either one of them.

First let it intersect both, AB at the point E, and AC at D. Also extend the
line ADC to the point F in order to complete the diameter DCF. From this con-
struction it is clear, in accordance with that Euclidean theorem, that the product
FAXAD is equal to the product B4 X AE, since both products are equal to the
square of the line drawn tangent to the circle from A. But the whole of AF is
given, since all of its segments are given. CF and CD, as radii, are of course equal
to BC, and AD is the excess of CA over CD. Therefore the product BA XAE is
also given. So is AE in length, together with the remainder BE, the chord subtend-
ing the arc BE. By joining EC, we shall have BCE as an isosceles triangle of given
sides. Therefore angle EBC is given. Hence in triangle ABC the remaining angles
C and 4 will also be known from what precedes.

Now do not let the circle intersect AB, as in the second figure, where AB
meets the curve of the circumference. Nevertheless BE will be given. Moreover,
in the isosceles triangle BCE the angle CBE is given, and so also is its supplement
ABC. By exactly the same process of reasoning as before, the remaining angles
are given.

What has been said, containing as it does a considerable part of surveying,
may suffice for rectilinear triangles. Now let us turn to spherical triangles.

SPHERICAL TRIANGLES Chapter 14
[Book II, Chapter 3, according to Copernicus’ original plan)

I here regard a convex triangle as the figure which is enclosed on a spherical
surface by three arcs of great circles. But the size of an angle, as well as the differ-
ence between angles, [is measured] on an arc of the great circle which is drawn with
the [angle’s] point of intersection as its pole. This arc is intercepted by the
quadrants enclosing the angle. For, the arc so intercepted is to the whole circum-
ference as the angle at the intersection is to four right angles. These, as I said,
contain 360 equal degrees.

I

If there are three arcs of great circles of a sphere, any two of which, when
joined together, are longer than the third, clearly a spherical triangle can be formed
from them.

For, this statement about arcs is proved for angles by Euclid, XI, 23. Since the
ratio of angles and arcs is the same, and great circles pass through the center of the
sphere, evidently the three sectors of the circles, of which these are arcs, form
a solid angle at the center of the sphere. The theorem is therefore obvious.
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II

Any arc of a triangle must be less than a semicircle.

For, a semicircle does not form an angle at the center, but proceeds through
it in a straight line. On the other hand, the two remaining angles, to which arcs
belong, cannot enclose a solid angle at the center, and consequently not a spherical
triangle. This was the reason, in my opinion, why Ptolemy, in expounding this
class of triangles, especially in connection with the shape of the spherical sector,
stipulates that the assumed arcs should not be greater than a semicircle
[Syntaxis, 1, 13].

III

In right spherical triangles, the ratio of the chord subtending twice the side
opposite the right angle to the chord subtending twice either one of the sides
including the right angle is equal to the ratio of the diameter of the sphere to the
chord subtending twice the angle included, on a great circle of the sphere, between
the remaining side and the hypotenuse.

For let there be a spherical triangle ABC, in which C is a right angle. I say
that the ratio of the chord subtending twice 4B to the chord subtending twice
BC is equal to the ratio of the diameter of the sphere to the chord subtending
twice the angle BAC on a great circle.

With 4 as pole, draw DE as the arc of a great circle. Complete the quadrants
ABD and ACE. From F, the center of the sphere, draw the intersections of the
circles: FA, of ABD and ACE; FE, of ACE and DE; FD, of ABD and DE; and
also FG, of the circles AC and BC. Then draw BG perpendicular to FA4, BI to
FC, and DK to FE. Join GI.

If a circle intersects another circle while passing through its poles, it intersects
it at right angles. Therefore AED is a right angle. So is ACB by hypothesis. Hence
both planes EDF and BCF are perpendicular to AEF. In this last-mentioned
plane at point K draw a straight line perpendicular to the intersection FKE.
Then this perpendicular will form with KD another right angle, in accordance
with the definition of planes perpendicular to each other. Consequently KD is
perpendicular also to AEF, according to Euclid, XI, 4. In the same way BI is
drawn perpendicular to the same plane, and therefore DK and BI are parallel
to each other, according to Euclid, XI, 6. Likewise GB is parallel to FD, because
FGB and GFD are right angles. According to Euclid’s Elements, XI, 10, angle
FDK will be equal to GBI. But FKD is a right angle, and so is GIB according
to the definition of a perpendicular line. The sides of similar triangles being pro-
portional, DF is to BG as DK is to BI. But BI is half of the chord subtending
twice the arc CB, since BI is perpendicular to the radius CF. In the same way
BG is half of the chord subtending twice the side B4; DK is half of the chord
subtending twice DE, or twice angle 4 ;and DF is half of the diameter of the sphere.
Clearly, therefore, the ratio of the chord subtending twice AB to the chord sub-
tending twice BC is equal to the ratio of the diameter to the chord subtending
twice the angle A4, or twice the intercepted arc DE. The demonstration of this
Theorem will prove to be useful.

Iv
In any triangle having a right angle, if another angle and any side are given,
the remaining angle and the remaining sides will also be given.
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For let the triangle ABC have angle 4 right, and either of the other angles,
for instance, B, also given. But with regard to the given side, I make a threefold
division. For either it is adjacent to the given angles, like AB; or only to the right
angle, like AC; or it is opposite the right angle, like BC.

Then first let AB be the given side. With C as pole, draw DE as the arc of
a great circle. Complete the quadrants CAD and CBE. Produce 4B and DE until
they intersect at point F. Then F in turn will be the pole of CAD, since 4 and D
are right angles. If great circles on a sphere intersect each other at right angles,
they bisect each other, and pass through each other’s poles. Therefore ABF and
DEF are quadrants. Since 4B is given, BF, the remainder of the quadrant, is also
given, and angle EBF is equal to its vertical angle ABC, which was given. But,
according to the preceding Theorem, the ratio of the chord subtending twice BF
to the chord subtending twice EF is equal to the ratio of the diameter of the sphere
to the chord subtending twice the angle EBF. But three of these are given: the
diameter of the sphere, twice BF, and twice the angle EBF, or their halves. There-
fore, according to Euclid, VI, 15, half of the chord subtending twice EF is also
given. By the Table, the arc EF is given. So is DE, the remainder of the quadrant,
or the required angle C.

In the same way, in turn, for the chords subtending twice the arcs, DE is
toAB as EBC is to CB. But three are already given: DE, AB, and CBE as a quad-
rant. Therefore the fourth, the chord subtending twice CB, is also given, and so
is the required side CB. And for the chords subtending twice the arcs, CB is to
CA as BF is to EF. For, both of these ratios are equal to the ratio of the diameter
of the sphere to the chord subtending twice the angle CBA; and ratios equal
to the same ratio are equal to each other. Therefore, since the three members BF,
EF, and CB are given, the fourth member CA is given, and CA is the third side
of the triangle ABC.

Now, let AC be the side assumed as given, and let it be required to find sides
AB and BC as well as the remaining angle C. Again, if we invert the argument,
the ratio of the chord subtending twice CA to the chord subtending twice CB
will be equal to the ratio of the chord subtending twice the angle ABC to the diam-
eter. From this, the side CB is given, as well as AD and BE as remainders of
the quadrants. Thus we shall again have the ratio of the chord subtending twice
AD to the chord subtending twice BE equal to the ratio of the chord subtending
twice ABF, and that is the diameter, to the chord subtending twice BF. Therefore
the arc BF is given, and its remainder is the side AB. By a process of reasoning
similar to the preceding, from the chords subtending twice BC, AB, and FBE,
the chord subtending twice DE, or the remaining angle C, is given.

Furthermore, if BC is assumed, once more, as before, AC as well as the re-
mainders AD and BE will be given. From them, through the subtending straight
lines and the diameter, as has often been explained, the arc BF and the remaining
side AB are given. Then, according to the previous Theorem, through BC, 4B,
and CBE, as given, the arc ED is obtained,that is to say, the remaining angle C,
which we were looking for.
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If the angles of a triangle are given, one of them being a right angle, the sides
are given.

Keep the previous diagram. In it, because angle C is given, arc DE is given,
and so is EF, as the remainder of the quadrant. BEF is a right angle, because
BE is drawn from the pole of DEF. EBF is the vertical angle of a given angle.
Therefore triangle BEF, having a right angle E, and another given angle B,
and a given side EF, has its sides and angles given, in accordance with the pre-~
ceding Theorem. Therefore BF is given, and so is AB, the remainder of the
quadrant. Likewise in the triangle ABC, the remaining sides AC and BC are shown,
by what precedes, to be given.

VI

If on the same sphere two triangles each have a right angle and another
corresponding angle and a corresponding side equal, whether that side be adjacent
to the equal angles or opposite either of the equal angles, the remaining cor-
responding sides will also be equal, and so will the remaining angle.

Let there be a hemisphere ABC. On it take two triangles ABD and CEF. Let 4
and C be right angles. Furthermore let angle ADB be equal to CEF, and let one
side be equal to one side. First let the equal side be adjacent to the equal angles,
that is, let AD = CE. I say that also side 4B is equal to side CF, BD to EF,
and the remaining angle ABD to the remaining angle CFE. For with their poles
in B and F, draw GHI and IKL as quadrants of great circles. Complete ADI
and CEI. These must intersect each other at the hemisphere’s pole in the point I,
since 4 and C are right angles, and GHI and CEI are drawn through the poles of
the circle ABC. Therefore, since AD and CE are assumed to be equal sides, the
remaining arcs DI and IE will be equal, and so will IDH and IEK as vertical
angles of angles assumed equal. H and K are right angles. Ratios equal to the same
ratio are equal to each other. The ratio of the chord subtending twice ID to the
chord subtending twice HI will be equal to the ratio of the chord subtending twice
EI to the chord subtending twice IK. For, each of these ratios, according to
Theorem III, above, is equal to the ratio of the diameter of the sphere to the chord
subtending twice the angle IDH, or the equal chord subtending twice JEK. The
chord subtending twice the arc DI is equal to the chord subtending twice IE.
Hence, according to Euclid’s Elements, V, 14, also in the case of twice IK and HI
the chords will be equal. In equal circles, equal straight lines cut off equal arcs,
and fractions multiplied by the same factor preserve the same ratio. Therefore,
as simple arcs JH and IK will be equal. So will GH and KL, the remainders of
the quadrants. Hence angles B and F are clearly equal. Therefore the ratios of
the chord subtending twice AD to the chord subtending twice BD, and of the
chord subtending twice CE to the chord subtending twice BD are equal to the
ratio of the chord subtending twice EC to the chord subtending twice EF. For,
both of these ratios are equal to the ratio of the chord subtending twice HG,
or its equal KL, to the chord subtending twice BDH, that is, the diameter,
according to the converse of Theorem III. 4D is equal to CE. Therefore, according
to Euclid’s Elements, V, 14, BD is equal to EF, on account of the straight lines
subtending twice these arcs.

With BD and EF equal, I shall prove in the same way that the remaining sides
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and angles are equal. And if AB and CF are in turn assumed to be the equal sides,
the same conclusions will follow from the equality of the ratios.

VII

The same conclusion will now be proved also if there is no right angle, provided
that the side adjacent to the equal angles is equal to the corresponding side.

Thus in the two triangles ABD and CEF, let any two angles B and D be equal
to the two corresponding angles E and F. Also let side BD, which is adjacent
to the equal angles, be equal to side EF. I say that again the triangles have
their sides and angles equal.

For, once more, with B and F as poles, draw GH and KL as arcs of great
citcles. Let AD and GH, when extended, intersect each other at N, while EC
and LK, when similarly extended, intersect each other at M. Then the two triangles
HDN and EKM have angles HDN and KEM equal, as vertical angles of angles
assumed to be equal. H and K are right angles because they pass through the poles.
Moreover, sides DH and EK are equal. Therefore the triangles have their angles
and sides equal, in accordance with the preceding Theorem.

And once again, GH and KL are equal arcs, since angles B and F were assumed
to be equal. Therefore the whole of GHN is equal to the whole of MKL, in accord-
ance with the axiom about equals added to equals. Consequently here too the
two triangles AGN and MCL have one side GN equal to one side ML, angle
ANG equal to CML, and right angles G and L. For this reason these triangles
also will have their sides and angles equal. When equals are subtracted from equals,
the remainders will be equal, AD to CE, AB to CF, and angle BAD to the remaining
angle ECF. Q.E.D.

VIII

Furthermore, if two triangles have two sides equal to the two corresponding
sides, as well as an angle equal to an angle, whether it be the angle included by the
equal sides, or an angle at the base, the base will also be equal to the base, and the
remaining angles to the remaining angles.

As in the preceding diagram, let side AB be equal to side CF, and AD to CE.
First, let angle A4, included by the equal sides, be equal to angle C. I say that also
the base BD is equal to the base EF, angle B to F, and the remaining angle BDA
to the remaining angle CEF. For we shall have two triangles, AGN and CLM,
in which G and L are right angles; GAN and MCL are equal as supplementary
angles of BAD and ECF, which are equal; and G4 is equal to LC. Therefore
the triangles have their corresponding angles and sides equal. Hence, AD and CE
being equal, the remainders DN and ME are also equal. But it has already been
shown that angle DNH is equal to angle EMK. H and K being right angles, the
two triangles DAN and EMK also will have their corresponding angles and sides
equal. Hence, as remainders BD will also be equal to EF. and GH to KL. Their
angles B and F are equal, and so are the remaining angles ADB and FEC.

But instead of the sides AD and EC, let the bases BD and EF be assumed to
be equal. With these bases opposite equal angles, but everything else remaining
as before, the proof will proceed in the same way. For, GAN and MCL are equal,
as supplements of equal angles. G and L are right angles. AGis equal to CL. Hence,
in the same way as before, we shall have two triangles AGN and MCL with their
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corresponding angles and sides equal. The same is true also for their sub-triangles,
DHN and MEK. For, H and K are right angles; DNH is equal to KME; DH
and EK are equalsides, as remainders of quadrants. From these equalities the same
conclusions follow as those which I enunciated.

IX

On a sphere too, the angles at the base of an isosceles triangle are equal to each
other.

Let ABC be a triangle with AB and AC, two of its sides, equal. I say that ABC
and ACB, the angles at the base, are also equal. From the vertex A4, draw a great
circle intersecting the base at right angles, that is, passing through the poles
[of the base]. Let the great circle be AD. In the two triangles ABD and ADC,
then, side BA is equal to side AC; AD is common to both triangles; and the angles
at D are right angles. It is therefore clear that, in accordance with the preceding
Theorem, angles ABC and ACB are equal. Q.E.D.

COROLLARY

Accordingly it follows that the arc drawn through the vertex of an isosceles
triangle at right angles to the base will bisect the base and, at the same time, the
angle included by the equal sides, and conversely, as is clear from this Theorem
and the preceding one.

X

Any two triangles having their corresponding sides equal will also have their
corresponding angles equal, each to each.

For in both cases the three segments of great circles form pyramids, whose
vertices are at the center of the sphere. But their bases are the plane triangles
bounded by the straight lines subtending the arcs of the convex triangles. These
pyramids are similar and equal, according to the definition of equal and similar
solid figures. When two figures are similar, however, the rule is that, taken in any
order, their corresponding angles are equal. Therefore these triangles will have
their corresponding angles equal. In particular, those who define similar figures
more generally want them to be whatever figures have similar configurations in
which their corresponding angles are equal. From these considerations it is clear,
I think, that on a sphere triangles having their corresponding sides equal are
similar, as in the case of plane triangles.

XI

Every triangle having two sides and an angle given becomes a triangle of given
angles and sides.

For if the given sides are equal, the angles at the base will be equal. Drawing
an arc from the vertex at right angles to the base will readily make clear what is
required, in accordance with the Corollary of Theorem IX.

But the given sides may be unequal, as in triangle ABC. Let its angle 4 be
given, together with two sides. These either include or do not include the given
angle.

First, let it be included by the given sides, AB and AC. With C as pole, draw
DEF as the arc of a great circle. Complete the quadrants CAD and CBE. Produce
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AB to intersect DE at point F. Thus also in the triangle ADF, the side AD is given
as the remainder when AC is subtracted from the quadrant. Moreover, angle
BAD is given as the remainder when CAB is subtracted from two right angles.
For, the ratio of the angles and their sizes are the same as those which result
from the intersection of straight lines and planes. D is a right angle. Therefore, in
accordance with Theorem IV, ADF will be a triangle of given angles and sides.
Again, in triangle BEF, angle F has been found; E is right, because its sides
pass through the poles; and side BF is also known as the quantity by which the
whole of ABF exceeds AB. In accordance with the same theorem, therefore,
BEF also will be a triangle of given angles and sides. Hence, through BE, BC
is given as the remainder of the quadrant and a required side. Through EF,
the remainder of the whole of DEF is given as DE, and this is the angle C. Through
the angle EBEF, its vertical angle ABC is given, and this was required.

But if, instead of AB, CB, the side opposite the given angle, is assumed, the
same result will follow. For, AD and BE are given as the remainders of the quad-
rants. By the same argument the two triangles ADF and BEF, as before, have
their angles and sides given. From them, the sides and angles of the subject triangle
ABC are given, as was proposed.

XII

Furthermore, if any two angles and a side are given, the same results will
follow.

For, keeping the construction in the preceding diagram, in triangle ABC
let the two angles ACB and BAC be given, as well as the side AC, which is adjacent
to both angles. If, in addition, either of the given angles were a right angle,
everything else could be deduced by reasoning in accordance with Theorem IV,
above. However, I want this to be a different case, in which neither of the given
angles is a right angle. Then 4D will be the remainder of the quadrant CAD;
angle BAD is the remainder when BAC is subtracted from two right angles;
and D is a right angle. Therefore the angles and sides of triangle AFD are given,
in accordance with Theorem IV, above. But since angle C is given, the arc DE
is given, and so is the remainder EF. BEF is a right angle, and F is an angle
common to both triangles. In the same way, in accordance with Theorem IV,
above, BE and FB are given, and from them the required remaining sides 4B and
BC will be known.

On the other hand, one of the given angles may be opposite the given side.
For example, if angle ABC is given instead of ACB, while everything else remains
upchanged, the same proof as before will make known the whole of ADF as
a triangle of given angles and sides. The same is true for the sub-triangle BEF.
For, angle F is common to both; EBF is the vertical angle of a given angle; and
E is a right angle. Therefore, as is proved above, all its sides are also given. From
them, finally, the same conclusions follow as those which I enunciated. For, all
these properties are always interconnected by an invariant mutual relationship,
as befits the form of a sphere.

XIII

Finally, if all the sides of a triangle are given, the angles are given.
Let all the sides of triangle ABC be given. I say that all the angles also are
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found. For, the triangle will have sides which are either equal or not equal. Then,
first, let AB and AC be equal. Obviously, the halves of the chords subtending twice
AB and AC will also be equal. Let these half-chords be BE and CE. They will
intersect each other in the point E, because they are equidistant from the center
of the sphere on DE, the intersection of their circles. This is clear from Euclid,
III, Definition 4, and its converse. But according to Euclid, III, 3, DEB is a right
angle in plane ABD, and so is DEC in plane ACD. Therefore BEC is the angle of
inclination of those planes, according to Euclid, XI, Definition 4. We shall find
angle BEC in the following way. For, it will be subtended by the straight line
BC. Then we shall have the rectilinear triangle BEC. Its sides will be given
through their arcs, which are given. Also the angles of BEC will be given, and we
shall have the required angle BEC, that is, the spherical angle BAC, and the
remaining angles, through what precedes.

But the triangle may be scalene, as in the second diagram. Obviously, the
halves of the chords subtending twice the sides will not intersect one another.
For let arc AC be greater than 4B, and let CF be half of the chord subtending
twice AC. Then CF will pass below. But if the arc is smaller, the half-chord will
be higher, according as these lines happen to be nearer to or farther away from
the center, in accordance with Euclid, III, 15. Then let FG be drawn parallel to
BE. Let FG intersect BD, the intersection of the circles, in the point G. Join
CG. Clearly, then, EFG is a right angle, being of course equal to AEB, and EFC
is also a right angle, since CF is half of the chord subtending twice AC. Then
CFG will be the angle of intersection of the circles AB and AC. Therefore we
obtain CFG also. For DF is to FG as DE is to EB, since DFG and DEB are similar
triangles. Hence FG is given in the same units as those in which FC is also given.
But the same ratio holds also for DG to DB. DG also will be given in units whereof
DC is 100,000. What is more, angle GDC is given through arc BC. Therefore,
in accordance with Theorem II on Plane Triangles, side GC is given in the same
units as the remaining sides of the plane triangle GFC. Consequently, in accordance
with the last Theorem on Plane Triangles, we shall have angle GFC, that is, the
required spherical angle BAC, and then we shall obtain the remaining angles, in
accordance with Theorem XI on Spherical Triangles.

XIV

If a given arc of a circle is divided anywhere so that the sum of both segments
is less than a semicircle, the ratio of half the chord subtending twice one segment
to half the chord subtending twice the other segment being given, the arcs of
the segments will also be given.

For let arc ABC be given, about D as center. Let ABC be divided at random
in the point B, yet in such a way that the segments are less than a semicircle.
Let the ratio of half the chord subtending twice 4B to half of the chord subtending
twice BC be given in some unit of length. I say that the arcs AB and BC are also
given.

For, draw the straight line AC, which will be intersected by the diameter at
the point E. Now from the end-points 4 and C, drop perpendiculars to the diam-
eter. Let these perpendiculars be AF and CG, which must be halves of the chords
subtending twice AB and BC. Then in the right triangles AEF and CEG, the verti-
cal angles at E are equal. Therefore the triangles have their corresponding angles
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equal. Being similar triangles, they have their sides opposite the equal angles
proportional: as AF is to CG, AE is to EC. Hence we shall have AE and EC in the
same units as those in which AF or GC was given. From AE and EC, the whole
of AEC will be given in the same units. But AEC, as the chord subtending the
arc ABC, is given in those units in which the radius DEB is given. In the same
units, AK, as half of AC, and the remainder EK, are also given. Join DA and
DK, which will also be given in the same units as DB. For, DK is half of the
chord subtending the segment remaining when ABC is subtracted from a semi-
circle. This remaining segment is included within angle DAK. Therefore angle
ADK is given as including half of the arc ABC. But in the triangle EDK, since
two sides are given, and EKD is a right angle, EDK will also be given. Hence
the whole angle EDA will be given. It includes the arc AB, from which the re-
mainder CB will also be obtained. This is what we wanted to prove.

XV

If all the angles of a triangle are given, even though none of them is a right
angle, all the sides are given.

Let there be the triangle ABC, with all of its angles given, but none of them
a right angle. I say that all of its sides are also given. For, from any of the angles,
for instance 4, through the poles of BC draw the arc AD. This will intersect BC
at right angles. AD will fall inside the triangle, unless one of the angles B or C
at the base is obtuse, and the other acute. Should this be the case, the perpendic-
ular would have to be drawn from the obtuse angle to the base. Complete the
quadrants BAF, CAG, and DAE. Draw the arcs EF and EG with their poles
in Band C. Therefore F and G will also be right angles. Then in the right triangles,
the ratio of half the chord subtending twice AE to half the chord subtend-
ing twice EF will be equal to the ratio of half the diameter of the sphere
to half the chord subtending double the angle EAF; similarly in triangle AEG,
with its right angle at G, the ratio of half the chord subtending twice AE
to half of the chord subtending twice EG is equal to the ratio of half the diameter
of the sphere to half of the chord subtending double the angle EAG. Then since
these ratios are equal, the ratio of half the chord subtending twice EF to half of
the chord subtending twice EG will be equal to the ratio of half the chord subtend-
ing double the angle EAF to half of the chord subtending double the angle EAG.
FE and EG are given arcs, being the remainders when angles B and C are subtracted
from right angles. From FE and EG, then, we shall obtain the ratio of angles
EAF and EAG, that is, of their vertical angles, BAD and CAD. But the whole of
BAC is given. Therefore, in accordance with the preceding Theorem, angles
BAD and CAD will also be given. Then, in accordance with Theorem V, we shall
obtain sides AB, BD, AC, CD, and the whole of BC.

For the present let this digression suffice for triangles, so far as they are nec-
essary for our purpose. If they had to be discussed more fully, a special volume
would have been required.
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Book Two

INTRODUCTION

I have given a general account of the earth’s three motions, by which I promised
to explain all the phenomena of the heavenly bodies [I, 11]. I shall do so next, to
the best of my ability, by analyzing and investigating them, one by one. I shall begin,
however, with the most familiar revolution of all, the period of a day and night.
This, as I said [1, 4], is called nuchthemeron by the Greeks. I have taken it as belong-
ing particularly and directly to the earth’s globe, since the month, year,and other
intervals of time bearing many names proceed from this rotation, as number does
from unity, time being the measure of motion. Hence with regard to the inequality
of days and ntights, the rising and setting of the sun and of the degrees of the zodiac
and its signs, and that sort of consequence of this rotation, I shall make some few
remarks, especially because many have written about these topics quite fully,
yet in harmony and agreement with my views. It makes no difference that they
base their explanations on a motionless earth and rotating universe, while I take
the opposite position and accompany them to the same goal. For, mutually
interrelated phenomena, it so happens, show a reversible agreement. Yet I shall
omit nothing essential. But let nobody be surprised if I still refer simply to the
rising and setting of the sun and stars, and similar phenomena. On the contrary,
it will be recognized that I use the customary terminology, which can be accepted
by everybody. Yet I always bear in mind that

For us who are borne by the earth, the sun and the moon pass by,
And the stars return on their rounds, and again they drop out of sight.

THE CIRCLES AND THEIR NAMES Chapter 1

The equator, as I said [I, 11], is the largest of the parallels of latitude described
around the poles of the daily rotation of the earth’s globe. The ecliptic, on the
other hand, is a circle passing through the middle of the signs of the zodiac, and
below the ecliptic the center of the earth circles in an annual revolution. But the
ecliptic meets the equator obliquely, in agreement with the inclination of the
earth’s axis to the ecliptic. Hence, as a result of the earth’s daily rotation, on
either side of the equator a circle is described tangent to the ecliptic as the
outermost limit of its obliquity. These two circles are called the “tropics”, be-
cause in them seem to occur the sun’s tropes or reversals in direction, that is to
say, in winter and summer. Hence the northern one is usually called the “sum-
mer solstice”, and the other one in the south, the “‘winter solstice”, as was explain-
ed above in the general account of the earth’s revolutions (I, 11].

Next comes the “horizon’, as it is called, which the Romans term the
“boundary”, since it separates the part of the universe visible to us from the
part which is hidden. [All the bodies that rise] seem to rise at the horizon, [and]

51



REVOLUTIONS

all the bodies that set [seem to set at the horizon]. It has its center on the surface
of the earth, and its pole at our zenith. But the earth is incommensurable with
the immensity of the heavens. Even the entire space intervening, according to my
conception, between the sun and the moon cannot be classed with the vastness
of the heavens. Hence the horizon seems to bisect the heavens like a circle passing
through the center of the universe, as I showed earlier [I,6]. But the horizon meets
the equator obliquely. Hence the horizon too is tangent, on either side of the equa-
tor, to a pair of parallels of latitude: in the north, [the circle limiting the stars which
are] always visible, and in the south, those which are always hidden. The former
is called the ‘‘arctic”, the latter the ‘‘antarctic’’, by Proclus and most of the
Greeks. The arctic and antarctic circles become larger or smaller in proportion
to the obliquity of the horizon or the altitude of the pole of the equator.
There remains the meridian, which passes through the poles of the horizon
and also through the poles of the equator. Therefore the meridian is perpendicular
to both of these circles. When the sun reaches the meridian, it indicates noon
and midnight. But these two circles, I mean the horizon and the meridian, which
have their centers on the surface of the earth, depend absolutely on the motion
of the earth and our sight, wherever it may be. For everywhere the eye acts as the
center of the sphere of all the bodies visible in every direction around it. Therefore,
as is clearly proved by Eratosthenes, Posidonius, and the other writers on cos-
mography and the earth’s size, all the circles assumed on the earth are also the
basis of their counterparts in the heavens and of similar circles. These too are
circles having special names, while others may be designated in countless ways.

THE OBLIQUITY OF THE ECLIPTIC, Chapter 2
THE DISTANCE BETWEEN THE TROPICS,

AND THE METHOD OF DETERMINING

THESE QUANTITIES

The ecliptic, then, crosses obliquely between the tropics and the equator.
Hence it is now necessary, I believe, to investigate the distance between the tropics
and, in that connection, the size of the angle at which the equator and ecliptic
intersect each other. This [information] must of course be perceived by the senses
and with the aid of instruments by which this very valuable result is obtained.
Hence make a square out of wood, or preferably out of some more rigid material,
[such as] stone or metal, lest perhaps the wood, yielding to a shift in the air, be
able to mislead the observer. Let a surface of the square be perfectly smooth,
and long enough for the subdivisions which have to be made, so that it would be
five or six feet. For in proportion to its size, and with one of the corners as center,
a quadrant of a circle is drawn. It is divided into 90 equal degrees. These are
subdivided in like manner into 60 minutes, or whatever subdivisions the degrees
can accommodate. Then a precisely lathed cylindrical pin is attached to the center.
Placed perpendicular to the surface, the pin protrudes a little, perhaps as much
as a finger’s breadth or less.

After this instrument has been constructed in this way, it is useful to trace
the meridian on a floor laid in the horizontal plane and leveled as carefully as
possible by means of a hydroscope or water level, lest it sag in any direction.
Now on this floor draw a circle, and at its center erect a pointer. Observing where
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its shadow falls on the circumference of the circle at any time before noon, we
shall mark that point. We shall make asimilar observation in the afternoon, and
bisect the arc of the circle lying between the two points already marked. By this
method a straight line drawn from the center through the point of bisection will
certainly indicate south and north for us without any error.

Then on this line as its base, the instrument’s plane surface is erected and
attached perpendicularly, with its center turned southward. A plumb line dropped
from the center meets the meridian line at right angles. The result of this proce-
dure is of course that the surface of the instrument contains the meridian.

Thereafter, on the days of the summer and winter solstices, the sun’s shadow
at noon must be observed as it is cast at the center by that pin or cylinder. Anything
may be used on the aforesaid arc of the quadrant to fix the place of the shadow
with greater certainty. We shall note the midpoint of the shadow as accurately
as possible in degrees and minutes. For if we do this, the arc found marked off
between the two shadows, summer and winter, will show us the distance between
the tropics and the entire obliquity of the ecliptic. By taking half of this, we shall
have the distance of the tropics from the equator, while the size of the angle of
inclination of the equator to the ecliptic will become clear.

Now this interval between the aforementioned limits, north and south, is
determined by Ptolemy, in degrees whereof the circle is 360°, as 47° 42’ 40"
[Syntaxis, I, 12]. He also finds that before his time the observations of Hipparchus
and Eratosthenes were in agreement. This determination is equivaleat to 11
units, whereof the entire circle is 83. Half of this interval, which is 23°51’
20", established the distance of the tropics from the equator, in degrees where-
of the circle is 360°, and the angle of intersection with the ecliptic. Therefore
Ptolemy thought that this was constant, and would always remain so. But from
that time these values are found to have decreased continuously down to our own
time. For, certain of our contemporaries and I have now discovered that the
distance between the tropics is not more than approximately 46° 58’, and the
angle of intersection not more than 23°29’. Hence it is now quite clear that the
obliquity of the ecliptic also is variable. I shall say more about this subject below
[II1, 10], where I shall also show by a quite probable conjecture that the oblig-
uity never was more than 23°52’, and never will be less than 23°28'.

THE ARCS AND ANGLES OF THE Chapter 3
INTERSECTIONS OF THE EQUATOR, ECLIPTIC,

AND MERIDIAN; THE DERIVATION OF THE
DECLINATION AND RIGHT ASCENSION

FROM THESE ARCS AND ANGLES,

AND THE COMPUTATION OF THEM

Just asIsaid [II,1] that the parts of the universe rise and set at the horizon,so I
[now] say that the heavens are bisected at the meridian. This also traverses both the
ecliptic and the equator in a period of 24 hours. It divides them, by cutting off
arcs starting from their vernal or autumnal intersection. It in turn is divided by
their interception of an arc [of the meridian]. Since they are all great circles, they
form a spherical triangle. This is a right triangle, because there is a right angle
where the meridian crosses the equator, through whose poles [the meridian passes,]
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by definition. The arc of the meridian in this triangle, or an arc so intercepted on
any circle passing through the poles of the equator, is called the “declination”
of the segment of the ecliptic. But the corresponding arc of the equator, which
rises together with its associated arc on the ecliptic, is called the “right ascen-
sion”.

All of this is easily shown in a convex triangle. For, let ABCD be the circle,
generally called the ““colure”, which passes through the poles of both the equator
and the ecliptic. Let half of the ecliptic be AEC; half of the equator, BED; the
vernal equinox, E; the summer solstice, A; and the winter solstice, C. Assume
that F is the pole of the daily rotation, and that on the ecliptic EG is an arc of,
say, 30°. Through its end, draw the quadrant FGH. Then in the triangle EGH,
obviously side EG is given as 30°. Angle GEH is also given; at its minimum,
in degrees whereof 360° = 4 right angles, it will be 23° 28’, in agreement with
the minimum declination AB. GHE is a right angle. Therefore, in accord-
ance with Theorem IV on Spherical Triangles, EGH will be a triangle of given
angles and sides. The ratio of the chord subtending twice EG to the chord sub-
tending twice GH, as has of course been shown [Theorem III on Spherical
Triangles], is equal to the ratio of the chord subtending twice AGE, or of
the diameter of the sphere, to the chord subtending twice AB. Their half-
chords are similarly related. Half of the chord subtending twice AGE is
100,000 as a radius; in the same units, the halves of the chords subtending twice
AB and EG are 39,822 and 50,000. If four numbers are proportional, the product
of the means is equal fo the product of the extremes. Hence we shall have half
of the chord subtending twice the arc GH as 19,911 units. This half-chord in the
Table gives the arc GH as 11° 29’, the declination corresponding to the segment
EG. Therefore in the triangle AFG too, sides FG and AG, as remainders of
quadrants, are given as 78° 31’ and 60°, and FAG is a right angle. In the same
way, the chords subtending twice FG, AG, FGH, and BH, or their half-chords
will be proportional. Now, since three of these are given, the fourth, BH, will
also be given as 62° 6’. This is the right ascension as taken from the summer
solstice, or from the vernal equinox it will be HE, of 27° 54’. Similarly from the
given sides FG of 78°31’, AF of 66° 32’, and a quadrant, we shall have angle
AGF of approximately 69°231/,’. Its vertical angle HGE is equal. We shall
follow this example in all the other cases too.

However, we must not disregard the fact that, at the points where the ecliptic
is tangent to the tropics, the meridian intersects the ecliptic at right angles, since
at those times the meridian passes through the poles of the ecliptic, as I said.
But at the equinoctial points the meridian makes an angle which is as much smaller
than a right angle as the ecliptic deviates from a right angle [in intersecting with
the equator], so that now [the angle between the meridian and the ecliptic] is
66° 32'. It should also be noticed that equal arcs of the ecliptic, as measured from
the equinoctial or solstitial points, are accompanied by equal angles and sides of
the triangles. Thus let us draw ABC as an arc of the equator, and the ecliptic
DBE, intersecting each other in B. Let this be an equinoctial point. Let us take
FB and BG as equal arcs. Through K and H, the poles of the daily rotation, draw
two quadrants, KFL and HGM. Then there will be two triangles, FLB and BMG.
Their sides BF and BG are equal; at B there are vertical angles; and at L and M,
right angles. Therefore, in accordance with Theorem VI on Spherical Triangles,
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the sides and angles of these triangles are equal. Thus the declinations FL and MG,
as well as the right ascensions LB and BM, are equal, and the remaining angle F is
equal to the remaining angle G.

In the same way, the situation will be clear when the equal arcs are measured
from a solstitial point. Thus let AB and BC be equal arcs to either side of B,
where the tropic is tangent to [the ecliptic]. For, draw the quadrants D4 and DC
from D, the pole of the equator, [and join DB]. In like manner there will be two
triangles, ABD and DBC. Their bases AB and BC are equal; BD is a side common
to both; and there are right angles at B. In accordance with Theorem VIII on
Spherical Triangles, these triangles will be shown to have their sides and angles
equal. Hence it becomes clear that when these angles and arcs are tabulated for
a single quadrant on the ecliptic, they will fit the remaining quadrants of the
entire circle.

I shall adduce an example of these relationships in the following description
of the Tables. In the first column will be entered the degrees of the ecliptic;inthe
next place, the declinations corresponding to those degrees; and in the third
place, the minutes by which the declinations occurring at the maximum obliquity
of the ecliptic differ from, and exceed, these partial declinations; the greatest of
these differences is 24’. I shall proceed in the same way in the Tables of [Right
Ascensions and Meridian] Angles. For when the obliquity of the ecliptic varies,
everything which accompanies it must vary. But in right ascension the variation is
found to be extremely small, since it does not exceed !/, of a “time”, and in the
course of an hour amounts to only /5, [thereof]. For, the ancients use the term
“times” for the degrees of the equator which rise together with the degrees of the
ecliptic. Both of these circles have 360 units, as I have often said [e. g.,I,12]. In order
to distinguish between them, however, many have called the ecliptic’s units “de-
grees”, but the equator’s “times”, a nomenclature which I too will follow hereafter.
[As I was saying] although this variation is so tiny that it can properly be neglected,
I did not mind adding it too. From these variations, then, the same results will
be clear in any other obliquity of the ecliptic if, in proportion to the excess of
the ecliptic’s maximum obliquity over the minimum, to each entry the correspond-
ing fractions are applied. Thus, for example, with the obliquity at 23° 34, if I wish
to know how great a declination belongs to 30° of the ecliptic measured from the
equinox, in the Table I find 11°29’, and under the differences 11’, which would
be added as a block when the obliquity of the ecliptic is at its maximum. This
was, as I said, 23°52’. But in the present instance it is assumed to be 23° 34/,
which is greater than the minimum by 6’. These 6’ are one-fourth of the 24’ by
which the maximum obliquity exceeds [the minimum]. The fraction of 11’ in
a similar ratio is about 3’. When I add these 3’ to 11° 29’, I shall have 11° 32’ as
the declination at that time of 30° of the ecliptic as measured from the equinoctial
point. In [meridian] angles and right ascensions we may proceed in the same
way, except that in the latter case we must always add the differences, and in the
former case always subtract them, in order to have everything come out more
accurate in relation to time.
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TABLE OF DECLINATIONS [OF THE DEGREES OF THE ECLIPTIC]

E- Dif-
clip- Dec‘:li- fer-
tic | PAHOM lence
De- || De- | Min- j Min-
gree || gree ute ute
1 0| 24 0
2 0| 48 1
3 1| 12 1
4 1| 36 2
5 2 0 2
6 2|23 2
7 2 | 47 3
8 3|11 3
9 3|3 4
10 3| 58 4
11 4 | 22 4
12 4| 45 4
13 5 9 5
14 5] 32 5
15 5|55 5
16 6| 19 6
17 6 | 41 6
18 7 4 7
19 7| 27 7
200 7| 49 8
21 8| 12 8
22 8| 34 8
23 8 | 57 9
24 9| 19 9
25 91 41 9
26 § 10 31|10
27 (10| 25 | 10
28 1 10| 46 | 10
29 || 11 8 {10
30 | 11| 29 | 11

cﬁ;)- De(_:li- f]'::f-
tic | PAUOM ence
De- || De- | Min- || Min-
gree || gree | ute | ute
31 11 | 50 | 11
3212 11 | 12
33 | 12 | 32 | 12
34 )12 |52 | 13
35 13| 12 | 13
36 | 13| 32 | 14
37113 | 52| 14
38 14| 12 | 14
39 | 14| 31 | 14
40 | 14| 50 | 14
41 | 15 9 15
42 15| 27| 15
43 | 15 | 46 | 16
44 | 16 4| 16
45 | 16 | 22 || 16
46 || 16 | 39 || 17
47 || 16 | 56 | 17
48 | 17 | 13 | 17
49 | 17 | 30 || 18
50 | 17 | 46 | 18
51 | 18 1| 18
52 || 18 | 17 || 18
53 [ 18 | 32 || 19
54 1 18 | 47 || 19
55 || 19 2] 19
56 |19 | 16 || 19
57 19| 30 || 20
58 1 19 | 44 || 20
59 | 19 | 57 || 20
60 | 20 | 10 | 20

56

c;:p-)- Decli- l?elf——
tic nation ence
De- | De- | Min- || Min-
gree || gree ute ute
61 || 20 | 23 | 20
62| 20 | 35 | 21
63 | 20 | 47 | 21
64 ) 20 | 58 | 21
65 | 21 9 21
66 | 21 | 20 || 22
67 | 21 | 30 || 22
68 | 21 | 40 || 22
69 | 21 | 49 || 22
70 | 21 | 58 | 22
71 | 22 7| 22
72122 15| 23
73 (22| 23 | 23
74 1 22| 30 | 23
75 | 22 | 37 || 23
76 | 22 | 44 | 23
T7 ] 22| 50 | 23
78 1 22| 55 || 23
79 || 23 1| 24
80 | 23 5 | 24
81 23| 10 || 24
82 | 23| 13 ) 24
83 | 23| 17| 24
84 |23 | 20 || 24
85 (23| 22 | 24
86 || 23 | 24 | 24
87 |23 | 26 || 24
88 (23 | 27 | 24
89 (23| 28 | 24
90 || 23 | 28 | 24
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TABLE OF RIGHT ASCENSIONS

Dif-

fer-

ence

Min-

ute

4

3
3
3

2
2
2

0
0
0

Equator

Min-

ute

51

54

13

17
21

25
29

33
38

43

52

12
17
22
27

33

38

43

48

54

De-

gree

58

60
62
63
64
65
66
67
68

69

70
71

72
73

74 | 47
75
76

78
79

80
81

82

83

85
86

87
88
90

clip-

tic

De-

gree

61

62 | 59

63

65
66

67
68

69

70
71

72
73

74
5
76

77
78

79

80
81

82
83

85
86
87
88
89

90

Dif-

fer-

ence

Min-

ute

4

4

4

5

6

5

5

5
4
4
4
4
4
4

Equator

Min-

ute

54

51

38

37

36

35

33

31

32

32
33

35
36
37

38

46

48

De-

gree

28

29

30 | 50

31

32 | 45
33

34| 41

35 | 40

36

37

38

39

40 | 34

41

45 | 32
46

47

48 | 34

50
51

52

53 | 41

55| 45
56

57

clip-

tic

De-

gree

31

32
33

35
36

37

38

39

41

43

45 | 42 | 32

46

47

48

49

50
51

52 | 49

53

54

55

56

57 || 54| 43

58

59

60

Dif-

fer-

ence

Min-

ute

2

3
3

4

4

Equator

Min-

ute

55
50

35

25

20
15
11

57

52
48

39

31

27

23

19

15
10
9
6

0

57

54

De-

gree

10
11
11

12
13

14 | 43

15
16
17

18
19

21

24
25
26

26

clip-

tic

De-

gree

10
11

12
13
14
15
16
17
18
19
20
21

22 | 20
23

24 | 22

25| 23
26

27

28

29

30 | 27
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TABLE OF MERIDIAN ANGLES

E- Dif-
clip-| Angle | fer-

tic ence

De- | De- | Min- | Min-
gree || gree | ute | ute
166 | 32| 24
266 331 24
3166][ 34| 24
4 66| 35| 24
51 66| 37 | 24
6| 66 | 39 | 24
71 66 | 42 | 24
8166 | 44} 24
9 66 | 47 || 24
10 § 66 | 51 || 24
11 | 66 | 55 | 24
12 | 66 | 59 | 24
13 | 67 4| 23
14 | 67 | 10 | 23
15 | 67 [ 15 | 23
16 | 67 | 21 | 23
17 | 67 | 27 | 23
18 | 67 | 34 | 23
19 || 67 | 41 | 23
20 ) 67 | 49 || 23
21| 67| 56 | 23
22 | 68 4| 22
23 | 68 | 13 | 22
24 ) 68 | 22 | 22
25 || 68 | 32 || 22
26 | 68 | 41 | 22
27 j 68 | 51 | 22
28169 | 2|21
29 69| 13 | 21
30 || 69 | 24 | 21

E- Dif-
clip-| Angle fer-
tic ence
De- | De- | Min- | Min-
gree || gree | ute || ute
31 |69 | 35| 21
32 | 69 | 48 || 21
33 | 70 0 20
34 70 | 13 | 20
35 70 | 26 | 20
36 | 70 { 39 | 20
37 |1 70 | 53 | 20
38 | 71 7 19
39471 | 22 19
40 | 71 | 36 | 19
41 | 71 | 52 | 19
2 | 72 8 || 18
43| 72 | 24 || 18
44 | 72 | 39 | 18
45 | 72 | 55 || 17
46 | 73 | 11 | 17
47 || 73 | 28 | 17
48 | 73 | 47 | 17
49 | 74 6 16
50| 74 | 24 || 16
5174} 42 | 16
52 || 75 1| 15
5375 |21} 15
54| 75| 40 | 15
55 | 76 1] 14
56 | 76 | 21 | 14
57 76 | 42 | 14
58 || 77 3113
50| 77 | 24 || 13
60 || 77 | 45 || 13

E- Dif-
clip-i Angle | fer-
tic ence
De- {| De- | Min- || Min-
gree || gree | ute || ute
61 § 78 ‘ 71 12
62 | 18] 29 | 12
63 | 78 | 51 || 11
64 | 79 14 | 11
65 1 79 | 36 | 11
66 | 79 | 59 || 10
67 | 80 | 22 | 10
68 | 80 | 45 | 10
69 || 81 9 9
70 | 81| 33 9
71 | 81 | 58 8
72 1 82 | 22 8
73 | 82 | 46 7
74 [ 83 | 11 7
75 | 83| 35 6
76 | 84 0 6
77 | 84 | 25 6
78 184 | 50| 5
79 i 8 | 15 5
80 | 85 | 40 4
81 | 86 5 4
82 || 86 | 30 3
83 186 | 55 3
84 || 87 | 19 3
85 || 87 | 53 2
86 | 88 | 17 2
87 | 88 | 41 1
88 || 89 6 1
89 | 89 | 33 0
90 | 90 0 0
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FOR EVERY HEAVENLY BODY SITUATED Chapter 4
OUTSIDE THE ECLIPTIC, PROVIDED THAT

THE BODY’S LATITUDE AND LONGITUDE ARE KNOWN,
THE METHOD OF DETERMINING ITS DECLINATION,
ITS RIGHT ASCENSION, AND THE DEGREE OF THE
ECLIPTIC WITH WHICH IT REACHES

MID-HEAVEN

The foregoing explanations concerned the ecliptic, equator, [meridian],
and their intersections. In connection with the daily rotation, however, it is im-
portant to know not only those appearances in the ecliptic which reveal the causes
of the phenomena of the sun alone. It is important to know also that a similar
procedure will show the declination from the equator and the right ascension
of those fixed stars and planets which are outside the ecliptic, provided, however,
that their longitude and latitude are given.

Accordingly, draw the circle ABCD through the poles of the equator and
ecliptic. Let AEC be a semicircle of the equator with its pole at F, and BED
a semicircle of the ecliptic with its pole at G, and its intersection with the equator
at point E. Now from the pole G, draw the arc GHKL through a star. Let the place
of the star be given as point H, through which let the quadrant FHMN be drawn
from the pole of the daily rotation. Clearly, then, the star at H crosses the meridian
together with the two points M and N. The arc HMN is the star’s declination
from the equator, and EN is the star’s right ascension on the sphere. These are
the coordinates which we are looking for.

Now in triangle KEL, side KE and angle KEL are given, and EKL is a right
angle. Therefore, in accordance with Theorem IV on Spherical Triangles, sides
KL and EL as well as the remaining angle KLE are given. Therefore the whole
arc HKL is given. Consequently in triangle HLN, angle HLN is given, LNH is
a right angle, and side HL is given. Hence, in accordance with the same Theorem
IV on Spherical Triangles, the remaining sides HN, the star’s declination, and LN
are given. [When LN is subtracted from EL], the remainder is NE, the right
ascension, the arc through which the sphere turns from the equinox to the star.

Alternatively, from the foregoing relationships you may take arc KE of the
ecliptic as the right ascension of LE. Then LE in turn will be given by the Table
of Right Ascensions. LK will be given as the declination corresponding to LE.
Angle KLE will be given by the Table of Meridian Angles. From these quantities,
the rest will be determined, as has already been shown. Then, through the right
ascension EN, we obtain EM as the degree of the ecliptic at which the star reaches
mid-heaven together with the point M.

THE INTERSECTIONS OF THE HORIZON Chapter 5

In the right sphere the horizon is a different circle from the horizon in the
oblique sphere. For in the right sphere that circle is called the horizon to which
the equator is perpendicular, or which passes through the poles of the equator.
But in the oblique sphere the equator is inclined to the circle which we call the
horizon. Therefore at the horizon in the right sphere all bodies rise and set, and
the days are always equal to the nights. For, the horizon bisects all the parallels
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of latitude described by the daily rotation; it passes through their poles, of course,
and under those circumstances the phenomena occur which I have already
explained with regard to the meridian [II, 1,3]. But in this instance we regard
the day as extending from sunrise to sunset, and not in some way from daylight
to darkness, as it is commonly understood, that is, from dawn to the first artificial
light. But I shall say more about this subject in connection with the rising and
setting of the zodiacal signs [II, 13].

On the other hand, where the earth’s axis is perpendicular to the horizon,
nothing rises and sets. On the contrary, everything revolves in a circle, perpetually
visible or hidden. The exception is what is produced by another motion, such as
the annual revolution around the sun. As a result of this it follows that under
those conditions day lasts continuously for a petiod of six months, and night for
the rest of the time. Nor is there any other difference than that between winter
and summer, since in that situation the equator coincides with the horizon.

In the oblique sphere, however, certain bddies rise and set, while certain
others are always visible or hidden. Meanwhile the days and nights become
unequal. Under these circumstances the horizon, being oblique, is tangent to
two parallels of latitude, according to the amount of its inclination. Of these
two parallels, the one toward the visible pole is the boundary of the bodies which
are perpetually visible ; and the opposite parallel, the one toward the hidden pole,
is the boundary of the bodies which are perpetually hidden. Extending throughout
the entire latitude between these limits, therefore, the horizon divides all the
intervening parallels of latitude into unequal arcs. The equator is an exception,
since it is the greatest of the parallels of latitude, and great circles bisect each
other. In the upper hemisphere, then, the horizon obliquely cuts off from the
parallels of latitude greater arcs toward the visible pole than toward the southern
and hidden pole. The converse is true in the hidden hemisphere. The apparent
daily motion of the sun in these arcs produces the inequality of the days and

nights.
THE DIFFERENCES IN NOON SHADOWS Chapter 6

In noon shadows too there are differences, on account of which some people
are called periscian, others amphiscian, and still others heteroscian. Now the
periscians are the people whom we may label “circumumbratile”, since they
receive the sun’s shadow in all directions. And they are the people whose zenith,
or pole of the horizon, is at a distance from the earth’s pole which is smaller,
or not greater, than the distance of a tropic from the equator. For in those regions
the parallels of latitude to which the horizon is tangent are the boundaries of the
perpetually visible or hidden stars, and are greater than the tropics, or equal to
them. And therefore in the summer time the sun, high up among the perpetually
visible stars, in that season casts the shadows of the sundials in all directions. But
where the horizon is tangent to the tropics, these themselves become the boundaries
of the perpetually visible and perpetually hidden stars. Therefore at the time of
the solstice the sun is seen to graze the earth at midnight. At that moment the entire
ecliptic coincides with the horizon, six zodiacal signs rise swiftly and simulta-
neously, the opposite signs in equal number set at the same time, and the pole
of the ecliptic coincides with the pole of the horizon.
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The amphiscians, whose noon shadows fall on both sides, are the people who
live between the two tropics, in the region which the ancients call the middle zone.
Throughout that whole area the ecliptic passes directly overhead twice [daily], as
is demonstrated in Theorem II of Euclid’s Phenomena. Hence in the same area
the sundials’ shadows vanish twice, and as the sun moves to either side, the sundials
cast their shadows sometimes to the south, and at other times to the north.

We, the rest of the earth’s inhabitants, who live between the amphiscians
and the periscians, are the heteroscians, because we cast our noon shadows in
only one of these directions, that is, the north.

Now the ancient mathematicians used to divide the earth into seven climes
by means of the several parallels of latitude passing, for example, through Meroe,
Syene, Alexandria, Rhodes, the Hellespont, the middle of the Black Sea, the
Dnieper, Constantinople and so on. [These parallels were selected on a threefold
basis:] the difference and increase in the length of the longest day [in the specified
localities during the course of a year] ; the length of the shadows observed by means
of sundials at noon on the equinoctial days and the two solstices of the sunj; and
the altitude of the pole or the width of each clime. These quantities, having partly
changed with time, are not exactly the same as they once were. The reason is,
as I mentioned [II, 2], the variable obliquity of the ecliptic, which was overlooked
by previous astronomers. Or, to speak more precisely, the reason is the variable
inclination of the equator to the plane of the ecliptic. Those quantities depend
on this inclination. But the altitudes of the pole, or the latitudes of the places,
and the shadows on the equinoctial days agree with the recorded ancient observa-
tions. This had to happen, because the equator follows the pole of the terrestrial
globe. Therefore those climes likewise are not drawn and bounded with sufficient
precision by means of any impermanent properties of shadows and days. On the
other hand, they are delimited more correctly by their distances from the equator,
which remain the same forever. But that variation in the tropics, although it is
quite small, in southern localities allows a slight difference of days and shadows,
which becomes more perceptible to those who travel north.

Now so far as the shadows of sundials are concerned, then, for any given
altitude of the sun obviously the length of the shadow is obtained, and conversely.
Thus, let there be a sundial AB, which casts a shadow BC. Since the pointer is
perpendicular to the plane of the horizon, it must always make ABC a right angle,
in accordance with the definition of lines perpendicular to a plane. Hence, if
AC is joined, we shall have the right triangle ABC, and for a given altitude of the
sun, we shall have also angle ACB given. In accordance with Theorem I on
Plane Triangles, the ratio of the pointer AB to its shadow BC will be given, and
BC will be given as a length. In turn, when 4B and BC are given, in accordance
with Theorem III on Plane Triangles, angle ACB and the altitude of the sun
casting that shadow at the time will also be known. In this way, in their description
of those climes of the terrestrial globe, the ancients assigned to each clime its own

length of noon shadow, not only on the equinoctial days, but also on both solstitial
days.
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HOW TO DERIVE FROM ONE ANOTHER Chapter 7
THE LONGEST DAY, THE DISTANCE BETWEEN
SUNRISES, AND THE INCLINATION OF THE SPHERE;
THE REMAINING DIFFERENCES BETWEEN DAYS

Thus also for any obliquity of the sphere or inclination of the horizon, I shall
simultaneously demonstrate the longest and shortest day as well as the distance
between sunrises, and the remaining difference between the days. Now the distance
between sunrises is the arc of the horizon intercepted between the sunrises at
the solstices, summer and winter, or the distance of both of them from the sunrise
at the equinox.

Then let ABCD be the meridian. In the eastern hemisphere let BED be the
semicircle of the horizon, and AEC the semicircle of the equator. Let the equator’s
north pole be F. Assume that the sunrise at the summer solstice is in the point G.
Draw FGH as an arc of a great circle. Now since the rotation of the terrestrial
globe is accomplished around F, the pole of the equator, points G and H must
reach the meridian ABCD together. For, their parallels of latitude are drawn
around the same poles, and all great circles passing through these poles cut off
similar arcs of those parallels. Therefore the time elapsing from the rising at
G until noon is equally the measure of arc AEH, and of CH, the rest of the semi-
circle below the horizon, the time from midnight until sunrise. Now AEC is
a semicircle, while AE and EC are quadrants, being drawn from the pole of ABCD.
Consequently EH will be half of the difference between the longest day and the
equinoctial day, while EG will be the distance between the equinoctial and sol-
stitial sunrises. In triangle EGH, therefore, GEH, the angle of the obliquity of the
sphere, is known through the arc AB. GHE is a right angle. Side GH also is known
as the distance of the summer solstice from the equator. Therefore, in accordance
with Theorem IV on Spherical Triangles, the remaining sides are also given:
EH, half of the difference between the equinoctial day and the longest day, as well
as GE, the distance between the sunrises. Furthermore if, together with side
GH, side EH, [half] the difference between the longest day and the equinoc-
tial day, or EG is given, E, the angle of the inclination of the sphere, is given, and
therefore so is FD, the altitude of the pole above the horizon.

Next, assume that G on the ecliptic is not the solstice, but any other point.
Nevertheless, both of the arcs EG and EH will be known. For from the Table
of Declinations exhibited above, GH is obtained as the arc of declination corre-
sponding to that degree of the ecliptic, and all the other quantities are found by
the same method of proof. Hence it also follows that the degrees of the ecliptic
which are equidistant from the solstice cut off the same arcs of the horizon from
the equinoctial sunrise, and in the same direction. They also make the days and
nights equal in length. This happens because the same parallel of latitude contains
both degrees of the ecliptic, since their declination is equal and in the same direc-
tion. However, when equal arcs are taken in both directions from the intersection
with the equator, the distances between the risings come out equal again, but in
opposite directions, and in the inverse order the lengths of the days and nights
are equal too, because on both sides they describe equal arcs of the parallels of
latitude, just as the points [on the ecliptic] equidistant from the equinox have
equal declinations from the equator.
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Now in the same diagram, draw arcs of parallels of latitude. Let them be GM
and KN, intersecting the horizon BED in points G and K. From L, the south
pole, also draw LKO as a quadrant of a great circle. Then the declination HG
is equal to KO. Hence there will be two triangles, DFG and BLK, in which two
sides are equal to two corresponding sides: FG to LK, and FD, the altitude of the
pole, to LB. B and D are right angles. Therefore the third side, DG, is equal
to the third side, BK. Their remainders, GE and EK, the distances between the
risings, are also equal. Here too, then, two sides, EG and GH, are equal to two
sides, EK and KO. The vertical angles at E are equal. Hence the remaining sides,
EH and EO, are equal. When these equals are added to equals, as a sum the whole
arc OEC is equal to the whole arc AEH. But since great circles drawn through
the poles cut off similar arcs of parallel circles on spheres, GM and KN will also
be similar and equal. Q.E.D.

However, all this can be demonstrated also in another way. Draw the meridian
ABCD in the same way. Let its center be E. Let the diameter of the equator and
its intersection with the meridian be AEC. Let the diameter of the horizon and
the meridian line be BED); the axis of the sphere, LEM; the visible pole, L; and
the hidden pole, M. Assume that the distance of the summer solstice or that any
other declination is AF. At this declination draw FG as the diameter of a parallel
of latitude and also as the parallel’s intersection with the meridian. FG will intersect
the axis at K|, and the meridian line at N. Now according to Posidonius’ definition,
parallels neither converge nor diverge, but make the perpendicular lines between
them everywhere equal. Therefore the straight line KE will be equal to half of the
chord subtending twice the arc AF. Similarly, with reference to the parallel of lati-
tude whose radius is FK, KN will be half of the chord subtending the arc marking
the difference between the equinoctial day and the unequal day. The reason for
this is that all the semicircles, of which these lines are the intersections, that is,
of which they are the diameters, namely, BED of the oblique horizon, LEM of
the right horizon, AEC of the equator, and FKG of the parallel of latitude, are
perpendicular to the plane of the circle ABCD. And, in accordance with Euclid’s
Elements, X1, 19, the lines in which these semicircles intersect one another are
perpendicular to the same plane at points E, K, and N. In accordance with
Theorem 6 of the same Book, these perpendiculars are parallel to one another.
K is the center of the parallel of latitude, and E is the center of the sphere. There-
fore EN is half of the chord subtending twice the horizon arc marking the difference
between sunrise on the parallel of latitude and the equinoctial sunrise. AF, the
declination, is given, together with FL, the remainder of the quadrant. Hence KE
and FK, as halves of the chords subtending twice the arcs AF and FL, will be
known in units whereof AE is 100,000. But in the right triangle EKN, angle
KEN is given through DL, the altitude of the pole; and KNE, the complementary
angle, is equal to AEB, because as parallels of latitude on the oblique sphere they
are equally inclined to the horizon. Therefore the sides are given in the same units
whereof the radius of the sphere is 100,000. Now in units whereof FK, the radius
of the parallel of latitude, is 100,000, KN also will be given. And as half of the
chord subtending the entire difference between the equinoctial day and [the
day pertaining to] the parallel of latitude, KN will be given in units whereof in
like manner the parallel as a circle is 360. Hence the ratio of FK to KN clearly
consists of two ratios, namely, the ratio of the chord subtending twice FL to the
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chord subtending twice AF, that is, FK : KE, and the ratio of the chord subtending
twice AB to the chord subtending twice DL. The latter ratio is equal to EK : KN,
with EK of course taken as the mean proportional between FK and KN. Simi-
larly the ratio of BE to EN is likewise formed by the ratios BE : EK and
KE : EN, as Ptolemy shows in greater detail by means of spherical segments 5
[Syntaxis, 1, 13]. In this way, I believe, the inequality of the days and nights

is found. But also in the case of the moon and of whatever stars the declination

is given, the segments of the parallels of latitude described by them in the
daily rotation above the horizon are distinguished from the segments which are
below the horizon. From these segments their risings and settings can easily 1o
be learned.
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TABLE OF THE DIFFERENCE IN THE ASCENSIONS ON AN OBLIQUE SPHERE

De- Elevation of the Pole
clina-
tion
31 32 33 34 35 36
\Degtec Degree | Minute || Degree | Minute || Degree | Minute || Degree | Minute | Degree | Minute ]| Degree | Minute
[
1 0 36 0 37 0 39 0 40 0 42 0 4
2 1 12 1 15 1 18 1 21 1 24 1 27
3 1 48 1 53 1 57 2 2 2 6 2 11
4 2 24 2 30 2 36 2 42 2 48 2 55
5 3 1 3 8 3 15 3 23 3 31 3 39
6 3 37 3 46 3 55 4 4 4 13 4 23
7 4 14 4 24 4 34 4 45 4 56 5 7
8 4 51 5 2 5 14 5 26 5 39 5 52
9 5 28 5 41 5 54 6 8 6 22 6 36
10 6 5 6 20 6 35 6 50 7 6 7 22
11 6 42 6 59 7 15 7 32 7 49 8 7
12 7 20 7 38 7 56 8 15 8 34 8 53
13 7 58 8 18 8 37 8 58 9 18 9 39
14 8 37 8 58 9 19 9 41 10 3 10 26
15 9 16 9 38 10 1 10 25 10 49 11 14
16 9 55 10 19 10 44 11 9 11 35 12 2
17 10 35 11 1 11 27 11 54 12 22 12 50
18 11 16 11 43 12 11 12 40 13 9 13 39
19 11 56 12 25 12 55 13 26 13 57 14 29
20 12 38 13 9 13 40 14 13 14 46 15 20
21 13 20 13 53 14 26 15 0 15 36 16 12
22 14 3 14 37 15 13 15 49 16 27 17 5
23 14 47 15 23 16 0 16 38 17 17 17 58
24 15 31 16 9 16 48 17 29 18 10 18 52
25 16 16 16 56 17 38 18 20 19 3 19 48
26 17 2 17 45 18 28 19 12 19 58 20 45
27 17 50 18 34 19 19 20 6 20 54 21 4
28 18 38 19 24 20 12 21 1 21 51 22 43
29 19 27 20 16 21 6 21 57 22 50 23 45
30 20 18 21 9 22 1 22 55 23 51 24 48
31 21 10 22 3 22 58 23 55 24 53 25 53
32 22 3 22 59 23 56 24 56 25 57 27 0
33 22 57 23 54 24 19 25 59 27 3 28 9
34 23 55 24 56 25 59 27 4 28 10 29 21
35 24 53 25 57 27 3 28 10 29 21 30 35
36 25 53 27 0 28 9 29 21 30 35 31 52
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TABLE OF THE DIFFERENCE IN THE ASCENSIONS ON AN OBLIQUE SPHERE
De- Elevation of the Pole
clina-
tion
37 38 39 40 41 42
[Degree] Degree | Minute | Degree | Minute IDegtee Minute | Degree | Minute || Degree | Minute || Degree | Minute
1 0 45 0 47 0 49 0 50 0 52 0 54
2 1 31 1 34 1 37 1 41 1 44 1 48
3 2 16 2 21 2 26 2 31 2 37 2 42
4 3 1 3 8 3 15 3 22 3 29 3 37
5 3 47 3 55 4 4 4 13 4 22 4 31
6 4 33 4 43 4 53 5 4 5 15 5 26
7 5 19 5 30 5 42 5 55 6 8 6 21
8 6 5 6 18 6 32 6 46 7 1 7 16
9 6 51 7 6 7 22 7 38 7 55 8 12
10 7 38 7 55 8 13 8 30 8 49 9 8
11 8 25 8 44 9 3 9 23 9 44 10 5
12 9 13 9 34 9 55 10 16 10 39 11 2
13 10 1 10 24 10 46 11 10 11 35 12 0
14 10 50 11 14 11 39 12 5 12 31 12 58
15 11 39 12 5 12 32 13 0 13 28 13 58
16 12 29 12 57 13 26 13 55 14 26 14 58
17 13 19 13 49 14 20 14 52 15 25 15 59
18 14 10 14 42 15 15 15 49 16 24 17 1
19 15 2 15 36 16 11 16 48 17 25 18 4
20 15 55 16 31 17 8 17 47 18 27 19 8
21 16 49 17 27 18 7 18 47 19 30 20 13
22 17 44 18 24 19 6 19 49 20 34 21 20
23 18 39 19 22 20 6 20 52 21 39 22 28
24 19 36 20 21 21 8 21 56 22 46 23 38
25 20 34 21 21 22 11 23 2 23 55 24 50
26 21 34 22 24 23 16 24 10 25 5 26 3
27 22 35 23 28 24 22 25 19 26 17 27 18
28 23 37 24 33 25 30 26 30 27 31 28 36
29 24 41 25 40 26 40 27 43 28 48 29 57
30 25 47 26 49 27 52 28 59 30 7 31 19
31 26 55 28 0 29 7 30 17 31 29 32 45
32 28 5 29 13 30 54 31 31 32 54 34 14
33 29 18 30 29 31 44 33 1 34 22 35 47
34 30 32 31 48 33 6 34 27 35 54 37 24
35 31 51 33 10 34 33 35 59 37 30 39 5
36 33 12 34 35 36 2 37 34 39 10 40 51
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TABLE OF THE DIFFERENCE IN THE ASCENSIONS ON AN OBLIQUE SPHERE

De- Elevation of the Pole
clina-
tion
43 44 45 46 47 48
Degree|| Degree | Minute || Degree | Minute [ Degree | Minute | Degree [ Minute | Degree | Minute | Degree | Minute
1 0 56 0 58 1 0 1 2 1 4 1 7
2 1 52 1 56 2 0 2 4 2 9 2 13
3 2 48 2 54 3 0 3 7 3 13 3 20
4 3 44 3 52 4 1 4 9 4 18 4 27
5 4 41 4 51 5 1 5 12 5 23 5 35
6 5 37 5 50 6 2 6 15 6 28 6 42
7 6 34 6 49 7 3 7 18 7 34 7 50
8 7 32 7 48 8 5 8 22 8 40 8 59
9 8 30 8 48 9 7 9 26 9 47 10 8
10 9 28 9 48 10 9 10 31 10 54 11 18
11 10 27 10 49 11 13 11 37 12 2 12 28
12 11 26 11 51 12 16 12 43 13 11 13 39
13 12 26 12 53 13 21 13 50 14 20 14 51
14 13 27 13 56 14 26 14 58 15 30 16 5
15 14 28 15 0 15 32 16 7 16 42 17 19
16 15 31 16 5 16 40 17 16 17 54 18 34
17 16 34 17 10 17 48 18 27 19 8 19 51
18 17 38 18 17 18 58 19 40 20 23 21 9
19 18 4 19 25 20 9 20 53 21 40 22 29
20 19 50 20 35 21 21 22 8 22 58 23 51
21 20 59 21 46 22 34 23 25 24 18 25 14
22 22 8 22 58 23 50 24 4 25 40 26 40
23 23 19 24 12 25 7 26 5 27 5 28 8
24 24 32 25 28 26 26 27 27 28 31 29 38
25 25 47 26 46 27 48 28 52 30 0 31 12
26 27 3 28 6 29 11 30 20 31 32 32 48
27 28 22 29 29 30 38 31 51 33 7 34 28
28 29 44 30 54 32 7 33 25 34 46 36 12
29 31 8 32 22 33 40 35 2 36 28 38 1]
30 32 35 33 53 35 16 36 43 38 15 39 53
31 34 5 35 28 36 56 38 29 40 7 41 52
32 35 38 37 7 38 40 40 19 42 4 43 57
33 37 16 38 50 40 30 42 15 44 8 46 9
34 38 58 40 39 42 25 44 18 46 20 48 31
35 40 46 42 33 4 27 46 23 48 36 51 3
36 42 39 4 33 46 36 48 47 51 11 53 47
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TABLE OF THE DIFFERENCE IN THE ASCENSIONS ON AN OBLIQUE SPHERE

De- Elevation of the Pole
clina-
tion [
49 50 51 52 53 54
[Degree| Degree | Minute || Degree | Minute | Degree | Minute || Degree | Minute | Degree | Minute | Degree | Minute
1 1 9 1 12 1 14 1 17 1 20 1 23
2 2 18 2 23 2 28 2 34 2 39 2 45
3 3 27 3 35 3 43 3 51 3 59 4 8
4 4 37 4 47 4 57 5 8 5 19 5 31
5 5 47 5 50 6 12 6 26 6 40 6 55
6 6 57 7 12 7 27 7 4 8 1 8 19
7 8 7 8 25 8 43 9 2 9 23 9 4
8 9 18 9 38 10 0 10 22 10 45 11 9
9 10 30 10 53 11 17 11 2 12 8 12 35
10 11 42 12 8 12 35 13 3 13 32 14 3
11 12 55 13 24 13 53 14 24 14 57 15 31
12 14 9 14 40 15 13 15 47 16 23 17 0
13 15 24 15 58 16 34 17 11 17 50 18 32
14 16 40 17 17 17 56 18 37 19 19 20 4
15 17 57 18 39 19 19 20 4 20 50 21 38
16 19 16 19 59 20 44 21 32 22 22 23 15
17 20 36 21 22 22 11 23 2 23 56 24 53
18 21 57 22 47 23 39 24 34 25 33 26 34
19 23 20 24 14 25 10 26 9 27 11 28 17
20 24 45 25 2 26 43 27 46 28 53 30 4
21 26 12 27 14 28 18 29 26 30 37 31 54
22 27 42 28 47 29 56 31 8 32 25 33 47
23 29 14 30 23 31 37 32 54 34 17 35 45
24 31 4 32 3 33 21 34 4 36 13 37 48
25 32 26 33 46 35 10 36 39 38 14 39 59
26 34 8 35 32 37 2 38 38 40 20 42 10
27 35 53 37 23 39 0 40 42 2 33 4 32
28 37 43 39 19 41 2 42 53 44 53 47 2
29 39 37 41 21 43 12 45 12 47 21 49 4
30 41 37 43 29 45 29 47 39 50 1 52 37
31 43 44 45 44 47 54 50 16 52 53 55 48
32 45 57 48 8 50 30 53 7 56 1 59 19
33 48 19 50 44 53 20 56 13 59 28 63 21
34 50 54 53 30 56 20 59 42 63 31 68 11
35 53 40 56 34 59 58 63 40 68 18 74 32
36 56 42 59 59 63 47 68 26 74 36 90 0
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TABLE OF THE DIFFERENCE IN THE ASCENSIONS ON AN OBLIQUE SPHERE

De- Elevation of the Pole
clina-
tion
55 56 57 58 59 60
Degree{ Degree | Minute | Degree Minutel Degree | Minute || Degree | Minute || Degree | Minute | Degree | Minute
1 1 26 1 29 1 32 1 36 1 40 1 44
2 2 52 2 58 3 5 3 12 3 20 3 28
3 4 17 4 27 4 38 4 49 5 0 5 12
4 5 44 5 57 6 11 6 25 6 41 6 57
5 7 11 7 27 7 4 8 3 8 22 8 43
6 8 38 8 58 9 19 9 41 10 4 10 29
7 10 6 10 29 10 54 11 20 11 47 12 17
8 11 35 12 1 12 30 13 0 13 32 14 5
9 13 4 13 35 14 7 14 41 15 17 15 55
10 14 35 15 9 15 45 16 23 17 4 17 47
11 16 7 16 45 17 25 18 8 18 53 19 41
12 17 40 18 22 19 6 19 53 20 43 21 36
13 19 15 20 1 20 50 21 41 22 36 23 34
14 20 52 21 42 22 35 23 31 24 31 25 35
15 22 30 23 24 24 22 25 23 26 29 27 39
16 24 10 25 9 26 12 27 19 28 30 29 47
17 25 53 26 57 28 5 29 18 30 35 31 59
18 27 39 28 48 30 1 31 20 32 44 34 19
19 29 27 30 41 32 1 33 26 34 58 36 37
20 31 19 32 39 34 5 35 37 37 17 39 5
21 33 15 34 41 36 14 37 54 39 42 41 40
22 35 14 36 48 38 28 40 17 42 15 44 25
23 37 19 39 0 40 49 42 47 44 57 47 20
24 39 29 41 18 43 17 45 26 47 49 50 27
25 41 45 43 44 45 54 48 16 50 54 53 52
26 44 9 46 18 48 41 51 19 54 16 57 39
27 46 41 49 4 51 41 54 38 58 0 61 57
28 49 24 52 1 54 58 58 19 62 14 67 4
29 52 20 55 16 58 36 62 31 67 18 73 46
30 55 32 58 52 62 45 67 31 73 55 90 0
31 59 6 62 58 67 42 74 4 90 0
32 63 10 67 53 74 12 90 0
33 68 1 74 | 19 | 90 oI
e 74 33 90 0 The vacant spaces here belong to stars
35 | 9% Y  which neither rise nor set.
36
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THE HOURS AND PARTS Chapter 8
OF THE DAY AND NIGHT

From the foregoing, therefore, it is clear that, for a stated altitude of the pole,
we may take the difference in the days as indicated for a declination of the sun in
the Table. This difference may be added to a quadrant in the case of a northern
declination, or subtracted from it in the case of a southern declination. If the result
is doubled, we shall have the length of that day, and the duration of the night,
which is the rest of the circle.

If either of these two is divided by 15 degrees of the equator, the quotient
will show how many equal hours it contains. But if we take the twelfth part, we
shall have the duration of a seasonal hour. Now these hours take the name of
their day, of which they are always the twelfth part. Hence the terms “summer
solstitial, equinoctial, and winter solstitial hours” are found employed by the
ancients. Nor were any other hours originally in use than the twelve hours from
dawn to dusk. But they used to divide the night into four vigils or watches. This
regulation of the hours lasted for a long time by the unspoken agreement of all
nations. For the purpose of this regulation, water-clocks were invented. By the
subtraction from and addition to the water dripped from these clocks, the hours
were adjusted to the difference in the days, so that the subdivision of time would
not be obscured even by a cloudy sky. Afterwards, equal hours, common to day-
time and nighttime, were generally adopted. Since these equal hours are easier to
observe, the seasonal hours became obsolete. Hence, if you ask any ordinary person
which is the first, third, sixth, ninth or eleventh hour of the day, he has no answer
or at any rate his answer has no relevance to the subject. Also with regard to the
numbering of the equal hours, some now take it from noon, others from sunset,
others from midnight, and still others from sunrise, in accordance with the
decision of each society.

THE OBLIQUE ASCENSION OF THE DEGREES  Chapter 9
OF THE ECLIPTIC; HOW TO DETERMINE

WHAT DEGREE IS AT MID-HEAVEN

WHEN ANY DEGREE IS RISING

Now that I have thus explained the lengths of the days and nights as well as
the difference in those lengths, the next topic in proper order is the oblique
ascensions. I refer to the times during which the dodecatemories, that is, the
twelve zodiacal signs, or any other arcs of the zodiac, rise. For, between right
ascensions and oblique ascensions, there are no differences other than those which
I set forth between the equinoctial day and a day which is unequal to its night in
length. Now the names of living things have been borrowed for the zodiacal signs,
which consist of immovable stars. Starting from the vernal equinog, the signs have
been called Ram, Bull, Twins, Crab, and so on, as they follow in order.

For the sake of greater clarity, then, again draw the meridian ABCD. Let
AEC, the semicircle of the equator, and the horizon BED intersect each other in
the point E. Put the equinox in H. Let the ecliptic FHI, passing through H, inter-
sect the horizon in L. Through this intersection draw KLM, thé quadrant of
a great circle, from K, the pole of the equator. Thus it is certainly clear that arc
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HL of the ecliptic rises with HE of the equator. But in the right sphere, HL rose
with HEM. The difference between them is EM which, as I showed above [II, 7], is
half of [the difference between] the equinoctial day and the unequal day. But what
was added there in a northern declination, is subtracted here. In a southern declina~
tion, on the other hand, it is added to the right ascension in order to obtain the
oblique ascension. Accordingly, how long a whole sign, or other arc of the ecliptic,
takes to rise will be made clear by the ascensions computed from the beginning
[of the sign or arc] to its end.

Hence it follows that when any degree of the ecliptic, measured from the
equinox, is given as rising, the degree which is at mid-heaven is also given. For,
L [being the point which is] rising [on the ecliptic], given its declination through
HL, its distance from the equinox, its right ascension HEM, and the whole of
AHEM as the arc of the half-day, then the remainder, AH, is given. This is the
right ascension of FH, which is given by the Table, or also because AHF, the
angle of the obliquity, is given, together with the side AH, while FAH is a right
angle. Therefore the whole arc FHL of the ecliptic is given between the degree
of rising and the degree at mid-heaven.

Conversely, if the degree at mid-heaven, for instance, the arc FH, is given
first, we shall also know the degree which is rising. For, the declination AF will
be obtained, and so will AFB, through the angle of obliquity of the sphere, and
the remainder FB. Now in triangle BFL, angle BFL is given by what precedes;
so is side FB; and FBL is a right angle. Therefore the required side FHL is given.
An alternative method of obtaining it will appear below [II, 10].

THE ANGLE AT WHICH THE ECLIPTIC Chaprer 10
INTERSECTS THE HORIZON

Furthermore, since the ecliptic is a circle oblique to the axis of the sphere,
it makes various angles with the horizon. It is perpendicular to the horizon twice
for those who live between the tropics, as I have already said with regard to the
differences in the shadows [II, 6]. However, I thinkthat it isenoughfor us to demon-
strate only those angles which concern us who live in the heteroscian region. From
these angles, the entire theory of the angles will be easily understood. Now in the
oblique sphere, when the equinox or first point of the Ram is rising, the ecliptic
is lower and turns toward the horizon to the extent added by the greatest southward
declination, which occurs when the first point of the Goat is at mid-heaven.
Conversely, at a higher altitude the ecliptic makes the angle of rising greater when
the first point of the Balance rises, and the first point of the Crab is at mid-heaven.
The foregoing statements are quite obvious, I believe. For, these three circles, the
equator, ecliptic, and horizon, by passing through the same intersection, meet
in the poles of the meridian. The arcs of the meridian intercepted by these
circles show how great the angle of rising is judged to be.

But a way of measuring it also for the other degrees of the ecliptic may be
explained. Again let the meridian be ABCD, half of the horizon BED, and half
of the ecliptic ABC. Let any degree of the ecliptic rise at E. We are required to
find how great the angle AEB is in units whereof 4 right angles = 360°. Since
E is given as the rising degree, the degree at mid-heaven is also given by the
previous discussion, as is also the arc AE together with the meridian altitude 4B.
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Because ABE is a right angle, the ratio of the chord subtending twice AE to the
chord subtending twice AB is given as equal to the ratio of the diameter of
the sphere to the chord subtending twice the arc which measures the angle
AEB. Therefore the angle AEB also is given.

However, the given degree may be, not at the rising, but at mid-heaven. Let
it be A. Nevertheless the angle of rising will be measured. For, with its pole at E,
draw FGH as the quadrant of a great circle. Complete the quadrants EAG and
EBH. Now AB, the altitude of the meridian, is given, and so is AF, the remainder
of the quadrant. Angle FAG is also given by the foregoing, and FGA is a right
angle. Therefore the arc FG is given. So is the remainder GH, which measures
the required angle of rising. Here too, then, it is clear how, given the degree at
mid-heaven, the degree at the rising is given. For, the ratio of the chord subtending
twice GH to the chord subtending twice 4B is equal to the ratio of the diameter
to the chord subtending twice 4E, as in Spherical Triangles [I, 14, Theorem III].

For these relations too I have subjoined three kinds of Tables. The first will
give the ascensions in the right sphere, beginning with the Ram, and advancing
by 6° of the ecliptic. The second will give the ascensions in the oblique sphere,
likewise in steps of 6°, from the parallel of latitude whose pole’s altitude is 39°,
by half-steps of 3°, to the parallel with its pole at 57°. The remaining Table will
give the angles made with the horizon, also by steps of 6°, in the same 7
columns. All these computations are based on the minimum obliquity of the
ecliptic, 23°28’, which is approximately correct for our age.
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BOOK II CH. 10

TABLE OF THE ASCENSIONS OF THE ZODJACAL SIGNS IN THE REVOLUTION
OF THE RIGHT SPHERE

Ecliptic

Ascension

For a Single
Degree

Sign l Degree

Degree | Minute

Degree I Minute

T s

12
18
24
30
O s
12
18
24
30
I .

12

Q

5 30
11 0
16 34
22 10
27 54
33 43
39 35
45 32
51 37
57 48
64 6
70 29
76 57
83 27
90 0
96 33

103 3
109 31
115 54
122 12
128 23
134 28
140 25
146 17
152 6
157 50
163 26
169 0
174 30
180 0

0 55
0 55
0 56
0 56
0 57
0 58
0 59
1 0

—t
[ S IR U R O D DS DR S RS B N L

—
—t

59
58
57
56
56
55

© © © O o o o

55

For a Single

Ecliptic Ascension Degree
Sign | Degree | Degree | Minute | Degree | Minute
| 6 (18 | 30 0 | 55

12 | 191 0 0| 55
18 [ 196 | 34 0 | 56
24 1202 | 10 0 | 56
30 | 207 | 54 0o | 57
M| 6 |23 | 43 0o | 58
12 |219 | 35 0 | 59
18 | 225 | 32 1 0
24 231 | 37 1 1
30 |237 | 48 1 2
4 6 | 244 6 1 3
12 | 250 | 29 1 4
18 | 256 | 57 1 5
24 | 263 | 27 1 5
30 | 270 0 1 5
Al 6 |26 | 3 1 5
12 | 283 3 1 5
18 [ 289 | 31 1 5
24 |205 | 54 | 1| 4
30 (302 | 12 1 3
M| 6 [308 | 23 1 2
12 314 | 28 1 1
18 (1320 | 25 1 0
24 | 326 | 17 0| 59
30 | 332 6 0 | 58
H| 6 |33 | 50 0 | 57
12 343 | 26 0 | 56
18 | 349 0 0 | 56
24 (354 | 30 0| 55
30 | 360 0 0| 55
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TABLE OF THE ASCENSIONS IN THE OBLIQUE SPHERE

Altitude of the Pole

Ecliptic 39 42 45 48 51 54 57
Ascen- Ascen- Ascen- Ascen- Ascen- Ascen- Ascen-
sion sion sion sion sion sion sion
Sign | D° ( De- [Min-| De- [Min-| De- |Min-| De- | Min-| De- | Min-| De- | Min-| De- [Min-
gree | gree | ute | gree | ute | gree | ute | gree | ute | gree | ute | gree | ute | gree | ute
IY\ 6 3| 34 320 3 6 50 32 2112 1] 49
12 10 6| 44 6 15 44 8 4 27 3] 40
18| 10| 50 | 10 10| 9 | 27 39 7147 61 44 5| 34
24| 14| 32| 13139 | 12| 43 | 11| 40 | 10} 28 9| 7 71 32
30| 18|26 || 17| 21 | 16| 11 | 14| 51 | 13| 26 | 11| 40 9| 40
5 6 | 22| 30 || 21| 12 19 | 46 18| 14 16| 25 14 | 22 11 | 57
12 | 26( 39 | 25} 10 | 23| 32 21 42| 19138 || 17} 13 14| 23
18 | 31 0 29|20 27| 29 25| 24 23] 2} 20| 17 17 2
24| 35|38 || 33|47 | 31143 29| 25 || 26 47 | 23| 42 | 20
301 40| 30§ 38| 30 || 36| 15 331 41| 30| 49 | 27 26 | 23| 22
I 6| 45( 39| 43|31 | 41| 7 | 38| 23| 35|15 | 31341 27| 7
12| 51| 8 4852 ) 46|20 j 43| 27 | 40| 8 36| 13 | 31| 26
18 | 56| 56 | 54|35 | 51|56 | 48| 56 || 45| 28 | 41| 22 | 36| 20
24| 63| O 60} 36 || 57| 54 54| 49 | 51| 15 | 47 1 41 | 49
30| 69| 25 || 66| 59 64| 16 61 | 10 | 57| 34 || 53|28 || 48| 2
@ 6| 76 73|42 71| 0] 67|55 | 64|21 ) 60| 7 || 54| 55
12 )| 8| 2} 8 41} 78 75) 2] 71134 67} 28| 62| 26
lé 9| 10| 87 54| 8 | 22 82 29| 79110 75| 15 70| 28
240 9727 95|19 92|55 ) 90| 11 { 87| 3 | 8 22| 78| 55
30 (104 | 54 (102 | 54 || 100 | 39 98 5 95{ 13 | 91| 50 | 87| 46
JZ 6 ({112 24 | 110} 33 §108 | 30 106 | 11 103} 33 | 100 | 28 || 96 | 48
12 §119( 56 (118 16 | 116 | 25 [ 114 | 20 | 111 | 58 || 109 | 13 || 105 | 58
18 | 127 | 29 | 126 0 1124 23 (122 | 32 |[120 | 28 | 118 3115| 13
24 (135 4 (133 46 132 | 21 {130 | 48 {128 | 59 {126 | 56 || 124 | 31
30 1142 38 (1411 33 (140} 23 {139 | 3 1137 38 [135| 52 |133 | 52
ﬂP 6 |150( 11 || 149 | 19 (148 | 23 {147 | 20 {146 | 8 ||144 | 47 143 | 12
12 1157 | 41 [|157 | 1 (156 | 19 (155 | 29 154 | 38 | 153 | 36 || 153 | 24
18 [ 165 7 (164 40 {164 | 12 ||163 | 41 | 163 5 1162 | 24 | 162 | 47
24 1172 34 | 172 | 21 || 172 171 | 51 {171 | 33 | 171 12 || 170 | 49
30 | 180 0180 | O j180( O | 180 0 || 180 0180 O (180{ O
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BOOK II CH. 10

TABLE OF THE ASCENSIONS IN THE OBLIQUE SPHERE

Ecliptic

Altitude of the Pole

39

42

45

48

51

54

57

Ascen-
sion

Ascen-
sion

Ascen-
sion

Ascen-
sion

Ascen-
sion

Ascen-

sion

Ascen-
sion

De-
gree

12
18
24
30

12
18
24
30

12
18
24
30

12
18

12
18
24
30

12
18
24
30

De- | Min-
gree | ute

De-
gree

Min-
ute

De-
gree

Min-
ute

De- | Min-
gree | ute

De-
gree

Min-
ute

De- | Min-

gree | ute

De-
gree

Min-
ute

187 | 26
194 | 53
202 | 21
209 | 49
217 | 22
224 1 56
232§ 31

247 | 36

262 | 33
269 | 50
276 | 58
283 | 54
200 | 35

308 | 52
314 | 21
319 | 30
324 21

333 | 21
337 | 30
341 | 34
345 | 29
349 11
352 | 50
356 | 26

187
195
203
210
218
226
234
241
249
257
264
272
279
286
293
299
305
311
316
321
326
330
334
338

346
349
353
356

| 360

187
195
203
211
219
227
235
243
251
259
267
274
281
289
295
302
308
313
318
323
328
332
336

-1t 340

343
347
350
353
356
360

54
48
41
37
37
38
37
35
30
21

38
58

45

40
53
45
16
31
27

49
17
33
45
23

188 9
196 | 19
204 | 30
212 | 40
220 | 57
229 | 12
237 | 28
245 | 40
253 | 49
261 | 52
269 | 49
277 | 31
284 | 58
2021 5
298 | 50
305 11
311 | 4
316 | 33
321 | 37
326 | 19
330 | 35
334 36
338 | 18
341 | 46
345| 9
348 | 20
351 21
354 | 16
357 | 10
360 O

188
196
205
213
222
231
239
248
256
264
272
280
288
295
302
308
314
319
324
329
333
336
340
343
346
349
352
354
357
360

27
55
24
52
22

32

27
47
57
50
26
39
26
45
32
52
45
11
13
58
22
35
34
32
14
52
53

188
197
206
215
224
233
241
250
259
268
276
284
292
299
306
312
318
323
328
332
336
339

345
348
350
353
355
357
360

48
36
25
13

57
47
32
10
38
45
32
53
42
59
38
47
26
34
18
43
47
38
20
53
16
33
48

189
198
207
216
226
235
244
254
263
272
281
289
297
305
311
318
323
328
332
336
339

345
348
350
352
354
356
358
360

11
23
36

o]

29
47

12
14

32
34

58
11

34
53
38
58
58
37

20
28
26
20
11
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TABLE OF THE ANGLES MADE BY THE ECLIPTIC WITH THE HORIZON

Altitude of the Pole

Ecliptic ’

| 39

45

48

51

54

57

Angle

Angle

Angle

Angle

Angle

Angle

Angle

Ecliptic

De-

Sign gree

gree

Min-
ute

De-
gree

Min-
ute

gree

De- |Min-

ute

De- |Min-
gree | ute

De- |Min-
gree | ute

De-
gree

Min-
ute

De-
gree

Min-

ute

gree

Sign

T o

27
27
27
28
28
29
30
31
32
34
35
37
39
41

46
49
52
54
57
60
62

67
68
70
72
73
73
74
74

32
37
49
13
45
27
19
21
35

0

51
19
28

24
25
25
26
27
28
29
30
32

36
38

43
45
48
51
54
56
59
61
63
65
67
68
70
70
71
71

32
36
49

=]

15

20
43
17

14
32
11
51
34
20

42
27

56
52
27
53

50
20
28

21
21
21
22
22
23
23
24
26
27
28
30
32
34
37
39
42
45
47
50
53
56
58
60
62
64
65
66
67
68
68

32
36
48

6
34
11
59
56

3
23
52
37
32
41

2
33
15

0
48
38
22

0
26
20
42
18
51
59
49
20
28

18 | 32
18 | 36
18 | 47
19| 3
19 | 29
20( 5
20 | 48
21 | 41
22 |43
24| 2
25| 26
27| 5
28 | 56
31| 3
33 | 22
35 |53
38 | 35
41 | 8
44 | 13
47| 6
49 | 54
52 | 34
5| 7
57 | 26
59 | 30
61 | 17
62 | 46
63 | 56
64 | 48
65 | 19
65 | 28

15 | 32
15 | 35
15| 45
15 | 59
16 | 23
16 | 56
17 | 35
18 | 23
19 | 21
20 | 41
21 | 52
23 |11
25|15
27 (18
29 | 35
32| 5
34 | 44
37155
40 | 31
43 [ 33
46 | 21
49| 9
51 | 46
54 6
56 | 17
581 9
59 | 37
60 | 53
61 | 46
62 ( 18
62 | 28

12
12
12
12
13
13
14
15
15
16
18
19
21
23
25
28
30
33
36
39
42
45
48
50
53
54
56
57
58
59
59

32
35
43
56
18
45
20

3
56
59
14
42
25
25
37

6
50
43
40
43
43
37
19
47

7
58
27
50
45
17
28

© OV vV ©

10
10
11
11
12
13
14
15
17
19
21
23
26
29
32
35
38
41

47
49
52
53
54
55
56
56

32
35
41
53
13
31

2
40
26
20
26
48
23
16
26
52
36
34
39
50
56
57
48
24
47
38
16
46
44
16
28

30
24
18
12

30
24
18
12

30
24
18
12

30

18
12

30
24
18
12

30
24
18
12

o
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BOOK II CH. 11-12

THE USE OF THESE TABLES Chapter 11

The use of the Tables is already clear from what has been established. For
when the degree of the sun is known, we have received the right ascension. To
it, for any equal hour, we add 15° of the equator. If the total exceeds the 360°
of a whole circle, they are cast out. The remainder of the right ascension will
show the related degree of the ecliptic at mid-heaven at the hour in question,
starting from noon. If you perform the same operation for the oblique ascension
of your region, in like manner you will have the rising degree of the ecliptic at an
hour counted from sunrise. Moreover, for any stars which are outside the zodiac
and whose right ascension is known, as I showed above [II, 9], these Tables give the
degrees of the ecliptic which are at mid-heaven with these stars, through the same
right ascension, starting from the first point of the Ram. The oblique ascension
of those stars gives the degree of the ecliptic which rises with them, as the ascen-
sions and degrees of the ecliptic are revealed directly by the Tables. You will
proceed in the same way with regard to the setting, but always through the oppo-
site place. Furthermore, if a quadrant is added to the right ascension which is at
mid-heaven, the resulting sum is the oblique ascension of the rising degree. There-
fore, through the degree at mid-heaven, the degree at the rising is also given, and
conversely. The next Table gives the angles made by the ecliptic with the horizon.
These angles are determined by the degree of the ecliptic at the rising. From them
it is also learned how great the altitude of the ninetieth degree of the ecliptic is
from the horizon. A knowledge of this altitude is absolutely necessary in eclipses of
the sun.

THE ANGLES AND ARCS OF THOSE CIRCLES  Chapter 12
WHICH ARE DRAWN THROUGH THE POLES
OF THE HORIZON TO THE ECLIPTIC

I may next explain the theory of the angles and arcs occurring at the inter-
sections of the ecliptic with those circles which pass through the zenith of the hori-
zon and on which the altitude above the horizon is taken. But the noon altitude
of the sun or of any degree of the ecliptic at mid-heaven, and the angle of the
ecliptic’s intersection with the meridian were set forth above [II, 10]. For, the
meridian too is one of the circles which pass through the zenith of the horizon.
The angle at the rising has also been discussed already. When this angle is sub-
tracted from a right angle, the remainder is the angle formed with the rising
ecliptic by a quadrant passing through the zenith of the horizon.

It remains, then, by repeating the previous diagram [II, 10], to look at the in-
tervening intersections, I mean, of the meridian with the semicircles of the ecliptic
and horizon. Take any point on the ecliptic between noon and rising or setting.
Let this point be G. Through it draw the quadrant FGH from F, the pole of the
horizon. Through the designated hour, the whole arc AGE of the ecliptic be-
tween the meridian and the horizon is given. AG is given by hypothesis. In
like manner AF is also given, because the noon altitude 4B is given. The meridian
angle FAG is likewise given. Therefore FG is also given, by what was proved
with regard to spherical triangles. The complement GH, which is the altitude
of G, is given, together with angle FGA. These we were required to find.

77



REVOLUTIONS

This treatment of the angles and intersections connected with the ecliptic,
I excerpted compactly from Ptolemy while I was reviewing the discussion of
spherical triangles in general. If anybody wishes to work on this subject, he will
be able by himself to find more applications than those which I discussed only as
examples.

[An earlier version of the latter part of II, 12 survives in the autograph on folio 46",
without any indication that it was superseded. It begins in the middle of the second sentence of
the second paragraph above, with the choice of any point on the ecliptic]
between the rising and noon. Let it be 7, with its quadrant {»9. Through the designated hour,
the arc axe is given, and likewise a7 as well as o with the meridian angle {ov. Therefore, in
accordance with Theorem XI on Spherical Triangles, the arc {7 is given as well as the angle {na.
These we were required to find. Now the ratios of the chord subtending twice €% to the chord
subtending twice %9, and of the chords subtending twice the arcs ex and off are both equal to the
ratio of the radius to the intercept of angle %ne9. Therefore the altitude %9 of the given point 7 is
given. But in triangle %9%¢, sides ne and 79 are given, as is also angle ¢, while 9 is a right angle,
From these quantities we shall also uncover the measure of the remaining angle €% 9. This treatment
of the angles and segments of circles, I excerpted compactly from Ptolemy and others, while I was
reviewing the discussion of triangles in general. If anybody wishes to work on this subject, he will
be able by himself to find many more applications than those which I discussed only as examples.

THE RISING AND SETTING Chapter 13
OF THE HEAVENLY BODIES

The risings and settings of the heavenly bodies also belong with the daily
rotation, as is evident. This is true not only for those simple risings and settings
which I just discussed, but also for the ways in which the bodies become morning
and evening stars. Although the latter phenomena occur in conjunction with
the annual revolution, they will nevertheless be treated more appropriately in
this place.

The ancient mathematicians distinguish the true [risings and settings] from
the visible. The true are as follows. The morning rising of a heavenly body
occurs when it appears at the same time as the sun. On the other hand, the morning
setting of the body occurs when it sets at sunrise. Throughout this entire interval
the body was called a “morning star”. But the evening rising occurs when the
body appears at sunset. On the other hand, the evening setting occurs when the
body sets at the same time as the sun. In the intervening period it is called an
‘“evening star”, because it is obscured by day and comes forth at night.

By contrast, the visible risings and settings are as follows. The morning
rising of the body occurs when it first emerges and begins to appear at dawn and
before sunrise. On the other hand, the morning setting occurs when the body is
seen to have set just as the sun is about to rise. The body’s evening rising occurs
when it first appears to rise at twilight. But its evening setting occurs when it
ceases any longer to be visible after sunset. Thereafter the presence of the sun
blots the body out, until at their morning rising [the heavenly bodies] emerge in
the order described above.

In the same way as these phenomena occur in the fixed stars, they occur also
in the planets Saturn, Jupiter, and Mars. But the risings and settings of Venus
and Mercury are different. For they are not blotted out by the approach of the
sun, as the other planets are, nor are they made visible by its departure. On the
contrary, when they precede the sun, they immerse themselves in its brilliance
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BOOK II CH. 13

and extricate themselves. When the other planets have their evening rising and
morning setting, they are not obscured at any time, but shine throughout almost
the entire night. On the other hand, Venus and Mercury disappear completely
from [evening] setting to [morning] rising, and cannot be seen anywhere. There
is also another difference. In Saturn, Jupiter, and Mars, the true risings and
settings are earlier than the visible in the morning, and later in the evening,
to the extent that they precede sunrise in the first case, and follow sunset in the
second case. On the other hand, in the lower planets the visible morning and
evening risings are later than the true, whereas the settings are earlier.

Now the way in which the [risings and settings] may be determined can be
understood from what was said above, where I explained the oblique ascension
of any star having a known position, and the degree of the ecliptic with which
it rises or sets [II, 9]. If at that time the sun appears in that degree or the opposite
degree, the star will have its true moming or evening rising or setting.

From these, the visible risings and settings differ according to the brilliance
and size of each body. Thus, those which have a more powerful light are obscured
by the sun’s rays for a shorter time than those which are less bright. Moreover,
the limits of disappearance and appearance are determined by the subhorizontal
arcs, between the horizon and the sun, on the circles which pass through the poles
of the horizon. For fixed stars of the first magnitude, these limits are almost 12°;
for Saturn, 11°; for Jupiter, 10°; for Mars, 11?/,°; for Venus, 5°; and for Mercury,
10°. But the whole belt in which the remnant of daylight yields to night, the belt
which embraces twilight or dawn, contains 18° of the aforesaid circle. When the
sun has descended by these 18°, the smaller stars also begin to appear. Now this
is the distance at which some people put a plane parallel to the horizon and below
it. When the sun reaches this plane, they say that the day is beginning or the night
is ending. We may lwmow with what degree of the ecliptic a body rises or sets.
We may also discover the angle at which the ecliptic intersects the horizon at
that same degree. We may also find at that time as many degrees of the ecliptic
between the rising degree and the sun as are enough and as are associated with
the sun’s depth below the horizon in accordance with the aforementioned limits
of the body in question. If so, we shall assert that its first appearance or disap-~
pearance is occurring. However, what I explained in the preceding demonstration
with regard to the sun’s altitude above the earth also fits in all respects its descent
below the earth, since there is no difference in anything but position. Thus, the
bodies which set so far as the visible hemisphere is concerned, rise so far as the
hidden hemisphere is concerned, and everything occurs conversely and is readily
understood. Therefore, what has been said about the rising and setting of the
heavenly bodies, and, to that extent, about the daily rotation of the terrestrial
globe may be enough.
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THE INVESTIGATION OF THE PLACES Chapter 14
OF THE STARS, AND THE ARRANGEMENT
OF THE FIXED STARS IN A CATALOGUE

[The beginning of a new book, according to Copernicus’ original plan; an earlier draft of the
first two-thirds of this Chapter survives in the autograph, folio 46V - 47Y, without any
indication that it was superseded ; where this earlier draft is somewhat more explicit than the printed
text, it too is translated here].

[Earlier draft:

Now that I have expounded the terrestrial globe’s daily rotation and its consequences with
respect to the days and nights and their parts and variations, the explanations of the annual revolu-
tion ought to have come next. Not a few astronomers, however, agree with the traditional
practice of giving precedence to the phenomena of the fixed stars as the foundations of this science.
Hence I thought that I in particular should adhere to this judgement. For among my principles
and fundamental propositions I have assumed that the sphere of the fixed stars is absolutely immov-
able; and that the wanderings of all the planets are rightly compared with it, since motion requires
that something should be at rest. Yet someone may wonder why I adopted this order, whereas in
his Syntaxis [III, 1, introduction] Ptolemy considered that an explanation of the fixed stars could
not be given unless the knowledge of the sun and moon came first, and for this reason he deemed it
necessary to postpone his discussion of the fixed stars until then].

[Printed text:

This opinion, I believe, should be opposed. If, on the other hand, you interpret
it as referring to the calculations for computing the apparent motion of the sun and
moon, perhaps Ptolemy’s opinion will hold good. For, the geometer Menelaus
likewise kept track of most of the stars and their places through computations
based on their conjunctions with the moon.

[Barlier draft:

Of course I acknowledge that the stars’ places cannot be determined apart from the moon’s,
nor in turn can the moon’s apart from the sun’s. But these are problems which require the help of
instruments, and I believed that this topic must not be investigated in any other way. On the other
hand, anybody who wants the theory of the [solar and lunar] motions and revolutions in precise
tables will accomplish nothing, I maintain, if he disregards the fixed stars. Hence Ptolemy and
others before him and after him, who derived the length of the solar year only from the equinoxes
or solstices, in striving to establish fundamental propositions for us could never agree about this
length. In no topic, consequently, was there greater discord. This so disturbed most [specialists]
that they almost abandoned the hope of mastering astronomy and declared the motions in the
heavens to be beyond the comprehension of the human mind. Being aware of this attitude, Ptolemy
[Syntaxis, 111, 1] computed the solar year in his own age not without suspecting that an error
could appear in the course of time, and advised posterity to seek finer precision in this matter
subsequently. Hence it seemed to me worth while in this book, first, to show how much instru-
ments help to determine the places of the sun, moon, and stars, that is, their distances from an
equinoctial or solstitial point, and then to explain the sphere of the fixed stars studded with
constellations].

[Printed text:

But we shall do much better if we locate any star with the help of instruments
through a careful examination of the positions of the sun and moon, as I shall
soon show. I am also warned by the ineffectual attempt of those who thought
that the length of the solar year should be delimited simply by the equinoxes or
solstices, and not also by the fixed stars. In this effort down to our own time they
have never been able to agree, so that nowhere has there been greater dissension.
This was noticed by Ptolemy. When he computed the solar year in his own age,
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BOOK II CH. 14

not without suspecting that an error could appear in the course of time, he advised
posterity to seek finer precision in this matter subsequently. Hence it seemed
to me worth while in this book to show how skill with instruments may establish
the positions of the sun and moon, that is, the amount of their distance from the
vernal equinox or other cardinal points of the universe. These places will then
facilitate our investigation of other heavenly bodies, by means of which we may
also set before the eyes the sphere of the fixed stars studded with constellations,
and its representation.

Now I have already explained the instruments by which we may determine
the distance between the tropics, the obliquity of the ecliptic, and the inclination
of the sphere or the altitude of the pole of the equator [II, 2]. In the same way we can
obtain any other altitude of the sun at noon. Through its difference from the incli-
nation of the sphere, this altitude will show us the amount of the sun’s declination
from the equator. Then through this declination its position at noon, as measured
from an equinox or solstice, will also become clear. Now in a period of 24 hours
the sun seems to pass through almost 1°; the hourly fraction thereof amounts
to 2 Y/,. Hence for any designated hour other than noon, its position will be easily
inferred.

But for observing the positions of the moon and of the stars, another instru-
ment is constructed, which Ptolemy calls the “astrolabe” [Syntaxis, V, 1]. Now two
rings, or quadrilateral frames of rings, are made in such a way that their flat sides, or
members, are set at right angles to their concave — convex surface. These rings
are equal and similar in all respects, and of a convenient size. That is, if they
are too big, they become less manageable. Yet otherwise, generous dimensions
are better than skimpy, for the purpose of division into parts. Thus let [the rings’]
width and thickness be at least one-thirtieth of the diameter. Then they will be
joined and connected with each other at right angles along the diameter, with the
concave — convex surfaces fitting together as though in the roundness of a single
sphere. In fact, let one of them take the place of the ecliptic; and the other, of the
circle which passes through the poles of both (I mean, of the equator and the
ecliptic). Then the sides of the ecliptic ring should be divided into equal parts,
which are usually 360, and these may be further subdivided according to the size
of the instrument. Also on the other ring, by measuring quadrants from the ecliptic,
indicate the poles of the ecliptic. Take a distance from these poles in proportion
to the obliquity of the ecliptic, and mark the poles of the equator too.

After these rings have been arranged in this way, two other rings are made.
They are fastened at the ecliptic’s poles, on which they will move, [one on the]
outside and [the other on the] inside. Make these rings equal to the others in
thickness between the two flat surfaces, while the width of their rims is similar.
Fit them together so that there is contact everywhere between the larger ring’s
concave surface and the ecliptic’s convex surface, as well as between the smaller
one’s convex surface and the ecliptic’s concave surface. However, let there be
no obstacle to their being turned about, but let them permit the ecliptic with its
meridian freely and easily to slide over them, and conversely. Hence we will
neatly perforate these rings at the diametrically opposite poles of the ecliptic,
and insert axles to attach and support them. Divide the inner ring also into 360
equal degrees, so that in each quadrant there are 90° to the poles.

Furthermore, on the concave surface of this ring, another ring, the fifth,
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should be placed, and be able to turn in the same plane. To the rims of this ring,
attach diametrically opposite brackets with apertures and peepholes or eyepieces.
Here the light of the star can impinge and leave along the diameter of the ring,
as is the practice in the dioptra. Moreover, mount certain blocks on both sides
of the ring, as pointers toward the numbers on the containing ring, for the purpose
of observing the latitudes.

Finally, a sixth ring must be attached, to receive the whole astrolabe and support
it as it hangs from fastenings at the poles of the equator. Place this sixth ring on
a stand, sustained by which it will be perpendicular to the plane of the horizon.
Furthermore, when its poles have been adjusted to the inclination of the sphere,
let the astrolabe keep its meridian’s position similar to that of the meridian in na-
ture, without the slightest swerving away from it.

Then with the instrument fashioned in this way, we may wish to obtain the
place of a star. In the evening, or when the sun is about to set, at a time when we
also have the moon in view, we will line up the outer ring with the degree of the
ecliptic in which we have found by what precedes that the sun is known to be
then. We will also turn the intersection of the rings towards the sun, until both
of them, I mean, the ecliptic and that outer ring which passes through the poles
[of the ecliptic] cast equal shadows on each other. Then we also turn the inner
ring toward the moon. Placing our eye in the plane of the inner ring where we
will see the moon opposite, as though it were bisected by the same plane, we
will mark the spot on the instrument’s ecliptic. For, that will be the observed
place of the moon in longitude at that time. In fact, without the moon there was
no way of understanding the positions of the stars, since of all the heavenly bodies
it alone participates in the day and night. Then, as night descends, the star whose
place we are seeking can now be seen. We fit the outer ring to the position of the
moon. By means of this ring we adjust the position of the astrolabe to the moon,
as we did in the case of the sun. Then we also turn the inner ring toward the star,
until it seems to touch the plane of the ring, and is visible through the eyepieces
which are on the smaller ring within. For in this way we shall find the longitude
of the star together with its latitude. While these operations are being performed,
the degree of the ecliptic at mid-heaven will be placed before our eyes, and there-
fore it will be clear as crystal at what hour the observation was carried out.

[Earlier draft:

After these rings have been arranged in this way, two other rings are made. These are not
equal [to the first two rings] in diameter, but they resemble them in thickness and width. Attach
the latter pair at the ecliptic’s poles, fitting [one on the] outside and [the other on the] inside. Per-
forate them neatly, and install axles on which they may turn. But they are put together so that the
outside ring’s convex [surface] and the inside ring’s concave [surface] touch [the ecliptic], yet
without any friction which could interfere with their being rotated. On the inside ring too, divide
the quadrants into degrees like those into which the ecliptic was divided. Furthermore, on the inside
ring’s concave surface another ring should be placed in the same plane, in which it can turn without
interference in relation to the inside ring. To this [fifth ring] attach diametrically opposite brackets
with apertures, as is the practice in the dioptra, for the purpose of observing the latitudes. Finally,
a sixth ring must be attached which is capable of supporting the whole astrolabe, fastened to and
swinging on the equator’s [poles], as I said. Put [this sixth ring] on a stand or some other somewhat
elevated place, where it is sustained perpendicular to the plane of the horizon. Furthermore, when
its poles have been adjusted to the inclination of the sphere, let the ring keep the meridian as placed
in nature aligned with itself, and do not let the ring swerve away from the meridian at all.

Then with the instrument fashioned in this way, we may wish to obtain the place of a star.
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In the evening, or when the sun is about to set, at a time when the moon too can be seen, we line
up the outside ring with the degree of the instrument’s ecliptic in which the sun will be thought
to appear at that time. We also turn the intersection of the rings toward the sun until both of them,
the ecliptic and the outside ring which passes through the [ecliptic’s] poles, cast shadows on each
other that are equal and bisect each other. Then we also turn the inner ring toward the moon.
Placing our eye on one side, where we will see the moon on the opposite side as though bisected
by the same plane, we mark the spot on the instrument’s ecliptic, since that will be the moon’s
place in longitude at that time. For without the moon there was no way of arriving at the positions
of the stars, because it alone is the intermediary between light and darkness. Then, as night descends,
the star whose place we want has now become visible. We put the outside ring on the place of the
moon. By means of this ring we adjust the position of the astrolabe to the moon, as we did in the
case of the sun. Then we also turn the inside ring toward the star, until ... [The earlier draft ends
abruptly here].

For example, in the 2nd year of the emperor Antoninus Pius, on the 9th day of
Pharmuthi, the 8th Egyptian month, about sunset, Ptolemy in Alexandria wanted to
observe the place of the star in the chest of the Lion which is called Basiliscus or
Regulus [Synraxis VII, 2]. Training his astrolabe on the sun, which was already set-
ting, 5 [*/,] equinoctial hours after noon, he found the sun at 3 /,,° within the
Fishes. By moving the inner ring, he observed the moon following 92 /° after the
sun. Therefore the place of the moon was then seen at 5 */4° within the Twins.
Half an hour later, when the 6th hour after noon was being completed, the star had
already begun to appear, as 4° within the Twins was at mid-heaven. Ptolemy
turned the outer ring of the instrument to the place where the moon had already
been found. By proceeding with the inner ring, he determined the distance of the
star from the moon in the order of the zodiacal signs as 57 !/,,°. Now the moon
was found 92 /4° away from the setting sun, as was mentioned, and this fixed
the moon at 5 !/¢° within the Twins. But in the interval of half an hour the moon
should have moved ¥/,°, since the fraction per hour of the moon’s motion amounts
to 1/4°, more or less. However, on account of the lunar parallax, which had to be
subtracted at that time, the moon must have moved a little less than /,°, and he
determined the difference as about 1/,5°. Accordingly the moon must have been
at5 1/;° within the Twins. But when I discuss the lunar parallaxes, it will be evident
that the difference was not so great [IV, 16]. Hence it can be quite clear that the
observed place of the moon exceeded 5° within the Twins by more than 1/3° and
by hardly less than %/4°. To this position, the addition of 57 1/,,° establishes the
place of the star at 2 /,° within the Lion, at a distance from the sun’s summer
solstice of about 32 1/,°, with a north latitude of /¢°. This was the place of Basi-
liscus, through which the approach to all the other fixed stars lay open. Now
this observation was performed by Ptolemy, according to the Roman [calendar]
on 23 February 139 C.E., the first year of the 229th Olympiad.

In this way that most outstanding of astronomers noted the distance of
each of the stars from the vernal equinox at that time, and he set forth the constella-
tions of the celestial creatures. By these achievements he gave no small assistance
to this study of mine, and relieved me of quite an arduous task. I believed that the
places of the stars should not be located with reference to the equinoxes, whicfi
shift in the course of time, but that the equinoxes should be located with reference
to the sphere of the fixed stars. Hence I can easily start the cataloguing of the
stars at some other unchangeable beginning. I have decided to commence with
the Ram, as the first zodiacal sign, and with its first star, which is in its head.
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My purpose is that in this way always the same definitive appearance will remain
for those bodies which shine as a team, as though fixed and linked together, once
they have taken their permanent place. Now through the wonderful zeal and skill
of the ancients they were grouped into 48 figures. The exceptions are those stars
which the circle of the perpetually hidden stars kept from the fourth clime, which
passes near Rhodes, so that these stars, as unknown to the ancients, remained
unattached to a constellation. Nor were the stars formed into figures for any
other reason, according to the opinion of the younger Theon in his commentary
on Aratus, than that their vast number should be separated into parts, which
could be known one by one under certain designations. This practice is quite
old, since we read that even Job, Hesiod, and Homer mentioned the Pleiades,
Hyades, Arcturus, and Orion. Therefore in tabulating the stars according to
their longitude, I shall not use the twelve zodiacal signs, which are derived from the
equinoxes and solstices, but the simple and familiar number of degrees. In all
other respects I shall follow Ptolemy, with a few exceptions, which I find either
corrupt or distorted in some way. But the method of determining the distance of
the stars from those cardinal points will be explained by me in the next Book.
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DESCRIPTIVE CATALOGUE OF THE SIGNS AND STARS
I: THOSE WHICH ARE IN THE NORTHERN REGION
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Longitude Latitude
Constellations of the stars De | Mine pe- | Min- Magnitude
grees utes grees utes

LITTLE BEAR OR DOG’S TAIL
At the tip of the tail 53 30 |N.| 66 0 3
To the east in the tail 55 50 |N.| 70 0 4
At the beginning of the tail 69 20 |N.| 74 0 4
The more southerly [star] on the western side

of the quadrangle 83 0 IIN.| 75 20 4
The northern [star] on the same side 87 0 IN.| 77 40 4
The more southerly [star] on the [quadran-

gle’s] eastern side 100 30 |N.| 72 40 2
The northern [star] on the same side 109 30 iN.| 74 50 2
7 stars: 2 of the 2nd magnitude, 1 of the 3rd, 4 of the 4th
Near the Dog’s Tail,